2.1a 舰桥布局 2.1b 驾驶室控制台布局 2.2.2a 雷达和 ECDIS 设备 2.2.2b 雷达操作台 2.2.2c 雷达显示器 2.2.3a ECDIS 操作台 2.2.3b ECDIS 显示器 2.3.1a 操舵台外围设备 2.3.2a 电罗经系统 2.3.2b 电罗经监视器 2.3.2c 电罗经子菜单 2.3.3a 自动驾驶仪控制面板 2.3.6a 舵角指示器 2.4.1a 主机舰桥控制装置 2.4.3a 推进器控制系统 2.4.3b 推进器控制面板 2.5.1a 速度计系统 2.5.2a Loran C 2.5.3a DGPS 导航仪 2.5.4a 风速计2.5.5a 气象传真接收器 2.5.6a 回声测深仪系统 2.5.6b 回声测深仪前面板 2.5.7a 值班呼叫面板 2.5.8a 自动识别系统 2.5.9a 航行事件记录系统 2.5.10a 主时钟控制面板 2.6.1a GMDSS 2.6.1b GMDSS 遇险反应 2.6.1c GMDSS 设备
船体和机械钢铸件 W8.1 范围 W8.1.1 这些要求适用于用于船体和机械应用的 C、C-Mn 和合金钢铸件,例如用于全球服务的船舶和海上设施的艉框架、舵框架、曲轴、涡轮机壳体、基座等。W8.1.2 这些规定在相关的 IACS 统一要求和/或船级社的要求中规定。本统一要求还考虑了仅适用于钢铸件的等级,其中设计和验收测试与环境温度下的机械性能有关。对于其他应用,额外用于焊接制造,以及不用于焊接的等级。1.2 可能需要额外的要求,特别是当铸件用于低温或高温时,例如用于具有冰级的船舶或锅炉。W8.1.3 另外,根据适用的服务温度和环境,通常需要对海上设施铸件提出额外要求。1.3 同样,符合国家标准的 C 和 C-Mn 钢铸件和合金钢铸件
在我写这篇文章的时候,有一项关键的水下船舶管理 (UWSH) 任务正准备开始 - 在水中更换 USS IWO JIMA 上的两个舵。这项工作在最近和过去的 UWSH 操作中脱颖而出,因为它的复杂性和需要向前倾斜的程度才能进入正确的头部空间以确保成功。以前从未做过 - 检查。需要新的专业围堰 - 检查。需要新的程序 - 检查。需要集中注意力的船上设备的细节 - 检查。这项工作结合了 MARMC、合同潜水员、UWSH 计划和工程支持人员,所有这些都将在狭小空间内的私人造船厂设施中完成。这清楚地表明了 RMC 能够跳出固有思维模式,让必要的实体参与评估什么是可能的,开发和改进流程以使其可行,然后将概念从想法推广到海滨执行。这种思维方式体现并继续展示海军潜水社区以任务为中心的心态。而且,这正是海军继续评估其执行战斗损伤评估和修复 (BDAR) 等任务的能力时所需要的心态——从问“能做到吗?”转变为接受“必须做到”的想法。
(1) 确认船体外壳的完整性,例如船体、舷侧船体、机翼、尾部和其他结构等。但仅适用于无需在干船坞或滑道上进行检验的船体水线以上部分。(2) 对船体外壳的结构进行冲水试验,例如船体、主翼等。需要风雨密性。(3) 对每个船体、舷侧船体、机翼、尾部和其他结构等连接处的区域进行近观检验。如验船师认为有必要,应进行无损检测。(4) 尽可能确认内部走廊和内部结构的完整性。(5) 确认座椅与地板的连接 (6) 确认方向、速度和姿态控制系统(机翼控制系统、水舵和空气舵)。如果验船师认为有必要,应进行操作试验。(7) 确认拖带设备的完整性(如果配备)。(8) 确认结构防火设施和布置的任何改动。(9) 确认所有通海开口以及连接船体的阀门、旋塞和紧固件。(9) 尽可能对螺旋桨叶片和轴系进行目视检查。如果验船师认为有必要,应进行无损检测。(10) 燃油舱外部检查 (11) 燃油系统、滑油系统、冷却系统、排气系统和液压系统的目视检查。(12) 燃油和滑油切断装置的操作试验。(13) 检查机械设备的工作状态,如验船师认为有必要,应进行有效性试验。(14) 检查电气设备的工作状态,如验船师认为有必要,应进行有效性试验。(15) 对驾驶舱内部进行一般目视检查。(16) 尽可能检查电缆。(17) 确认船体接地措施的有效性。
摘要:昆虫利用腹部和其他附肢的动态铰接和驱动来增强气动飞行控制。飞行中的这些动态现象有许多用途,包括保持平衡、增强稳定性和扩展机动性。生物学家已经观察和测量了这些行为,但尚未在飞行动力学框架中很好地建模。生物附肢通常相对较大,以旋转方式驱动,并具有多种生物功能。用于飞行控制的技术移动质量往往是紧凑的、平移的、内部安装的并且专用于该任务。生物飞行器的许多飞行特性远远超过任何同等规模的技术飞行器。支持现代控制技术以探索和管理这些执行器功能的数学工具可能会开启实现敏捷性的新机会。这里开发的多体飞机飞行动力学的紧凑张量模型允许对具有机翼和任意数量的理想附肢质量的仿生飞机进行统一的动力学和气动模拟和控制。演示的飞机模型是一架蜻蜓状的固定翼飞机。移动腹部的控制效果与控制面相当,横向腹部运动代替气动舵以实现协调转弯。垂直机身运动实现了与升降舵相同的效果,并且包括上下可能有用的瞬态扭矩反应。当在控制解决方案中同时使用移动质量和控制面时,可实现最佳性能。使用本文介绍的多体飞行动力学模型设计的现代最优控制器可以管理机身驱动与传统控制面相结合的飞机。
(1) 确认船体外壳的完整性,例如船体、舷侧船体、机翼、尾部和其他结构等。但仅适用于无需在干船坞或滑道上进行检验的船体水线以上部分。(2) 对船体外壳的结构进行冲水试验,例如船体、主翼等。需要风雨密性。(3) 对每个船体、舷侧船体、机翼、尾部和其他结构等连接处的区域进行近观检验。如验船师认为有必要,应进行无损检测。(4) 尽可能确认内部走廊和内部结构的完整性。(5) 确认座椅与地板的连接 (6) 确认方向、速度和姿态控制系统(机翼控制系统、水舵和空气舵)。如果验船师认为有必要,应进行操作试验。(7) 确认拖带设备的完整性(如果配备)。(8) 确认结构防火设施和布置的任何改动。(9) 确认所有通海开口以及连接船体的阀门、旋塞和紧固件。(9) 尽可能对螺旋桨叶片和轴系进行目视检查。如果验船师认为有必要,应进行无损检测。(10) 燃油舱外部检查 (11) 燃油系统、滑油系统、冷却系统、排气系统和液压系统的目视检查。(12) 燃油和滑油切断装置的操作试验。(13) 检查机械设备的工作状态,如验船师认为有必要,应进行有效性试验。(14) 检查电气设备的工作状态,如验船师认为有必要,应进行有效性试验。(15) 对驾驶舱内部进行一般目视检查。(16) 尽可能检查电缆。(17) 确认船体接地措施的有效性。
1.事实信息 ......................。。。。。。。。。。。。。。。。。。。。。。。。....1 1.1 飞行历史 .................。。。。。。。。。。。。。。。。。。。。。。。。..............1 1.2 人身伤害。.........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.3 飞机损坏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.4 其他损坏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.5 人员信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.5.1 船长 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...................9 1.5.1.1 飞行员关于机长的采访。.....。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.5.2 副驾驶。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。........11 1.5.2.1 飞行员对副驾驶的采访 .............................12 1.6 飞机信息 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....14 1.6.1 垂直稳定器和方向舵 ..........................................15 1.6.2 舵控制系统 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1.6.2.1 关于 A300-600 方向舵控制系统的公开听证会证词 ........23 1.6.2.2 空客对 A300-600 方向舵控制系统设计的更改 ...........24 1.6.2.3 A300-600方向舵控制系统设计与其他飞机的比较 ..................。。。。。。。。。。。。。。。。。。。。。。。。........26 1.6.3 发电厂 .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 1.6.4 飞机合格审定。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 1.6.4.1 垂直安定面载荷认证。。。。。。。。。。。。。。。。。。。。。。。。。。。31 1.6.4.1.1 联邦航空法规。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 1.6.4.1.2 关于第 25.351 条的公开听证会证词。 。。。。。。。。。。。。。。..........33 1.6.4.1.3 补充条件。...........。。。。。。。。。。。。。。。。。。。。。。。。35 1.6.4.2 垂直稳定器的设计载荷 ..............................36 1.6.4.3 垂直稳定器认证测试 ..................................38 1.6.4.3.1 全尺寸垂直稳定器认证试验的有效性。.........39 1.6.4.3.2 附件配件认证测试的有效性 ................40 1.6.4.4 偏航轴认证要求。................。。。。。。。。。。。。。。41 1.6.4.5 设计操纵速度信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 1.6.5 维护记录。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 1.7 气象信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45 1.8 导航辅助设备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 1.9 通讯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 1.10 机场信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 1.10.1 空中交通管制信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 1.11 飞行记录仪。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48 1.11.1 驾驶舱录音机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48 1.11.2 飞行数据记录器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48
摘要:昆虫利用腹部和其他附肢的动态关节和驱动来增强空气动力学飞行控制。飞行中的这些动态现象有许多用途,包括保持平衡、增强稳定性和扩展机动性。生物学家已经观察和测量了这些行为,但尚未在飞行动力学框架中很好地建模。生物附肢通常相对较大,以旋转方式驱动,并具有多种生物功能。用于飞行控制的技术移动质量往往紧凑、平移、内部安装并专用于该任务。生物飞行器的许多飞行特性远远超过任何同等规模的技术飞行器。支持现代控制技术探索和管理这些执行器功能的数学工具可能会开启实现敏捷性的新机会。本文开发的多体飞机飞行动力学紧凑张量模型允许对具有机翼和任意数量的理想化附件质量的仿生飞机进行统一的动力学和气动模拟和控制。演示的飞机模型是一架类似蜻蜓的固定翼飞机。移动腹部的控制效果与控制面相当,腹部横向运动代替气动舵以实现协调转弯。垂直机身运动实现了与升降机相同的效果,并且包括上下潜在有用的瞬态扭矩反应。当控制解决方案中同时采用移动质量和控制面时,可实现最佳性能。一架机身驱动与传统控制面相结合的飞机可以通过使用本文介绍的多体飞行动力学模型设计的现代最优控制器进行管理。
•定义战略并理解其含义•了解战略的本质。•区分B/W战略,政策,策略,程序,程序和规则。•了解战略决策及其在运营决策中的差异。•了解不同级别的策略。•知道战略的重要性。结构1.1简介1.2策略1.3战略的意义1.3战略的本质1.5策略v/s政策和策略1.6策略v/s计划,程序,程序,规则1.7策略水平1.7策略1.8策略的重要性1.9策略1.11摘要1.11关键词1.11自我评估问题1.12进一步的读数1.1进一步的读数与组织的最高介绍与组织的选择涉及各种替代对象的课程。提出和实现目标的过程被称为战略管理和战略作为实现目标的手段。策略是组织选择的宏伟设计或总体“计划”,以通过使用资源对设定目标进行反应或反应。策略最常投入一般的行动计划,并暗示着重点和资源的部署,以实现全面的目标。如果组织的特征在于目标和策略之间的协调,则认为该组织的效率和操作有效。必须将零件整合到整个中。策略可帮助组织通过尽职调查来满足其不确定的情况。没有策略,该组织就像没有舵的船。它就像一个流浪汉,没有特定目的地可以去。没有有效实施的适当策略,未来总是黑暗的,因此,商业失败的机会更多。
海洋复合材料结构检测技术 Eric Greene ( Eric Greene & Associates ) 越来越多的海洋结构正在使用复合材料。使用复合材料可以制造更轻、更耐腐蚀的主要结构和部件。美国海军的 DDG-1000 上部结构和 LPD-17 先进封闭桅杆正在用复合材料建造。此外,海上石油工业开始建造复合材料立管和居住模块。为复合材料航空航天结构开发的无损评估 (NDE) 技术不适用于大型海洋结构。本文概述了该研究。海洋复合材料结构的早期特点是采用固体层压板,按照今天的标准,这些层压板被认为是“过度建造”,以弥补我们缺乏经验数据。对更轻、更高效结构的需求导致了采用非常轻质芯材的夹层结构的发展。这些层压板具有更广泛的故障模式,包括:芯材损坏、外皮与芯材分离和进水。当今的复合材料船舶也以更高的速度运行,这会大大增加结构载荷。我们也有更多的建造者建造更大的复合材料结构,使用更多的材料类型和制造工艺组合。因此,我们已经从海事测量员可以依靠视觉检测分层或损坏的内部框架的时代转变为需要复杂的 NDE 工具来查找通常隐藏的损坏的时代。建造者还需要更复杂的方法来支持质量保证计划。幸运的是,信号和图像处理技术的进步使我们能够利用具有成本效益的 NDE 技术来利用整个电磁频谱。由于平台成本非常高,且任何结构故障都至关重要,航空航天业一直是复合材料结构 NDE 技术发展的推动力。但是,飞机所需的检查区域比船舶小得多,而且结构通常更加统一。这意味着船舶的 NDE 必须比为航空航天业开发的系统更便宜、更快速,并且涵盖更广泛的材料和结构布置。由于更加重视燃油经济性以降低运营成本和环境恶化,所有运输系统都在研究更多地使用轻质复合材料结构。作者简介 Eric Greene 获得了理学学士学位。先进的无损检测系统将确保这些平台安全运行,并有助于促进国内轻型船舶和船舶系统制造相关的经济发展。1979 年获得麻省理工学院船舶与海洋工程学士学位。他于 1987 年创立了 Eric Greene Associates, Inc.,专注于海洋复合材料。Greene 先生曾担任多项复合材料相关的美国海军技术插入工作的项目经理,包括 DDG-51 舵。他曾担任五个船舶结构委员会项目的首席研究员。
