摘要:单壁碳纳米管(SWCNTS)的捆绑显着破坏了它们的出色热和电性能。意识到稳定,均匀和表面活性剂 - 在溶剂和复合材料中的swcnt散发体长期以来一直被视为一个关键挑战。在这里,我们报告了含胺的芳香族和环己烷分子,这些分子是环氧固化的常见链扩展器(CES),可用于有效分散CNT。我们实现了CE溶剂中SWCNT的单管级分散,这是通过强性手性吸收和光致发光发射所证明的。SWCNT-CE分散体在环境条件下保持稳定数月。The excellent dispersibility and stability are attributed to the formation of an n-type charge-transfer complex through the NH − π interaction between the amine group of CEs and the delocalized π bond of SWCNTs, which is con fi rmed by the negative Seebeck coe ffi cient of the CE-functionalized SWCNT fi lms, the red shift of the G band in the Raman spectra, and the NH X射线光电子光谱中的−π峰。CES的高配置显着改善了宏观CNT组件的电气和热传输。通过HNO 3的功能修改后,在80.8%的光透射率下,CE分散的SWCNT薄膜的板电阻达到161Ω平方-1。CES交联CNT和环氧分子,在CNT/环氧纳米复合材料中形成了声子传输的途径。基于CE的NH-π相互作用为SWCNT在方便而可扩展的过程中的有效和稳定分散提供了新的范式。与原始环氧树脂相比,CE -CNT-环氧复合材料的热导率增强了1850%,这是CNT/Epoxy纳米复合材料迄今据报道的最高增强。关键字:碳纳米管,分散,电荷转移,热界面材料,透明电极,功能化■简介
图1:热点模拟方法。我们通过将其应用于Musashi-1的RRM1域来证明这种方法。(a)MSI1 / RNA复合物的结构。RNA(棍棒)围绕蛋白质包裹(球形)。将两个相邻的碱基A106和G107(洋红色)埋在蛋白质表面的浅口袋中。(b)通过收集涉及分子间氢键的深埋碱(洋红色)和原子(以黄色显示的供体,绿色供体显示),从复合物中的RNA产生了相互作用图。(c)相互作用图的组成部分聚集在空间中,不参与氢键的原子将其恢复为碳原子。这会产生“热点药理”。 (d)通过与荧光标记的RNA竞争确定的带有单个无碱性位点与原始同源RNA序列的RNA之间结合自由能的差异。正值表明当给定基碱被无碱位点替换时,结合减少,表明A106和G107对这种相互作用的结合亲和力的贡献大于附近的其他碱基。(e)热点药效团是基于配体筛选的模板,寻找可以模仿药效团的三维特征的化合物。屏幕导致化合物R12的鉴定,该复合R12模拟了环的几何形状,并提供了四个所需的氢键组中的三个。(F)R12与荧光素标记的RNA竞争MSI1结合,如通过荧光极化测定所观察到的。这些数据不允许确定结合亲和力。(g)热点药效团回到蛋白质结构上的叠加说明了应由理想配体捕获的相互作用:针对三个芳族侧级堆叠,以及四个分子间氢键。(H)R12在蛋白质结构上的叠加表明,该化合物有望保留芳香族堆积,并概括了四个氢键中的三个。
事实上,不同批次的材料物理性质可能会有显著差异,因为普通实验室环境不像工业或大规模环境那样受控;造成批次间差异的传统原因是使用并非专用于某一工艺的玻璃器皿、由于处理和不同供应商而导致的试剂和溶剂差异,甚至是特定实验室内不同季节或不同房间的温度和湿度差异。由于这些考虑,确定应优化哪些参数以获得理想的设备性能并不总是那么容易。为了阐明这个问题,我们在一个实验室中合成了几批次的 Ni3(HITP)2,尽可能使用相同的起始材料和溶剂,并将它们用作 KOH 水性电解质中的超级电容器电极。目标是辨别 MOF 批次的物理性质对设备性能的影响。Ni3(HITP)2 的特点是具有强烈的各向异性结构。配体由芳香族三苯单元组成,这些单元表现出很强的电子离域性,通过亚胺键(更准确地说是亚氨基半醌)与镍中心结合。配体和方平面 Ni 2+ 离子形成石墨烯状二维薄片,其堆叠形成直径约为 1.6 nm 的管状圆柱形通道。合成了三批 Ni 3 (HITP) 2 MOF,这里用 HITP_A、HITP_B 和 HITP_C 表示。它们是以之前发表的方法 8 作为合成条件的起点来制备的,然后根据 ESI 中的描述略有变化,† 产生了相同类型的 MOF 材料,但物理性质差异很大,如表 1 所示。三个样品的电导率分别跨越两个数量级,从 2·10·4 S cm 1 到 4·10·2 S cm 1 (对于 HITP_A 和 HITP_C)。通过拟合在 77 K 下测得的 N 2 吸附等温线确定的 BET 表面积相差三倍,从 260 m 2 g 1 到 825 m 2
聚酯可以称为大分子,其中主链段通过酯单元重复链接。这不包括在重复单元的侧基内包含酯链的聚合物,例如聚(乙酸乙烯乙烯酯)和聚(Meth)丙烯酸酯[1]。将在稍后讨论,主链酯连接在多种植者的生物降解性中起关键作用。在聚酯链中,相对于所使用的重复单元,存在大量的种类,其中包括线性脂肪族型聚体的间隔长度不同(例如poly(丁基琥珀酸酯)[PBS]),半芳族聚酯,包含至少一个芳香族和一个脂肪族单位(例如聚(乙二醇乙二醇酯)[PET])或完全芳香的聚酯(例如聚(4-羟基苯甲酸))。冷凝物聚酯是最古老的合成聚合物之一。第一组合成的聚酯是醇酸,这是通用电气公司在1910年至1915年之间商业开发的[2]。值得注意的是,从甘油和邻苯二甲酸酯之间的冷凝反应中获得树脂。在20世纪晚些时候,1928年,W.H。Carothers开始了他在杜邦的凝结聚酯研究的研究。首次从八度二烷酸和1,3-丙二醇中获得线性聚酯,分子量为12000 g/mol,当时被称为“超级聚酯”。 [3]分子量的改善显着高于先前获得的分子量在400至5000 g/mol之间。仍然,如今,polyeCarothers的研究小组继续进行(主要是脂肪族)的聚酯,但这并没有导致当时的任何商业发展。后来,进一步研究了苯二甲酸为半芳族多种植者生产的掺入,从而发现了宠物纤维[4]。同时,开发了其他含有tereph-苯甲酸和具有各种间隔长度的乙二醇的聚酯。从那时起,在Polyester的领域进行了巨大的发展,它们是当前塑料市场中普遍的聚合物类别。
背景:多环芳烃(PAHS)具有环境和公共卫生的关注,并导致皮肤不良属性,例如过早的皮肤老化和色素疾病。但是,关于慢性城市PAH污染物在皮肤微生物群中的潜在作用的信息很少。鉴于皮肤微生物群在健康和不良的皮肤表型以及PAH和皮肤特性之间的关系中具有作用,我们假设PAH的暴露可能与皮肤微生物群的变化有关。在这项研究中,来自中国两个城市的200多个中国人的皮肤菌群具有不同的PAH曝光水平,其特征是细菌和真菌扩增子和shot弹枪宏基因组学测序。结果:皮肤遗址和城市是改变微生物群落及其组装过程的强大参数。降低细菌 - 真菌微生物网络结构完整性和稳定性与皮肤条件(痤疮和头皮屑)有关。多变量分析揭示了丙酸杆菌和马拉西亚的丰富性与宿主特性和污染物暴露水平之间的关联。香农多样性的增加与剂量依赖性的PAH的暴露水平相关。shot弹枪元基因组学分析样品(n = 32)的PAH的个体的样本(n = 32)进一步强调了量化的PAH和减少皮肤分子的丰富性与口腔细菌的增加之间的关联。功能分析确定了PAH的水平与代谢和其他途径的微生物基因之间的关联,具有潜在的重要性在宿主 - 微生物相互作用以及芳香族化合物的降解中。结论:这项研究的结果证明了与PAH的长期暴露水平相关的皮肤微生物群的组成和功能能力的变化。这项研究的发现将有助于制定利用微生物群保护皮肤免受污染物的策略。
Vopak通过在Rayong Map Ta Phut中建造160,000立方米的储罐基础设施来支持将美国乙烷进口到泰国,从而达到了积极的最终投资决定,以扩大其全球工业终端足迹。Vopak的合资企业泰国坦克终端与全球领先的全球化学品公司PTT Global Chemical Companic Company Limited(GC)签署了具有里程碑意义的15年合同,用于在泰国储存和处理Ethane。根据本协议,泰国坦克航站楼将建造一个由长期合同支持的新的160,000立方米储罐基础设施,预计将于2029年完成。这种乙烷基础设施在战略上很重要。Ethane将作为石化饼干的长期原料供应,提高成本竞争力,原料安全性并加强泰国在全球化学工业中的领导地位。作为Vopak在泰国投资战略的一部分,Vopak计划在未来四年中分配约1.3亿欧元的储存和其他基础设施。这些投资与任何特定项目无关,并有望在调试后提供积累的运营现金回报。乙烷具有较低的碳足迹,与GC对可持续和负责任的运营的承诺保持一致。关于泰国坦克航站楼泰国坦克码头(TTT)是GC,Gulf Energy Development公共公司有限公司和Vopak Holding International B.V.Vopak在泰国坦克航站楼的股份为35%。Vopak在泰国坦克航站楼的股份为35%。它为液体化学物质和气体提供了存储和物流基础设施,以确保泰国最大的工业港口的Map Ta Phut的安全有效的终端操作。关于PTT全球化学PTT全球化学公共公司有限公司(GC),于2011年10月19日被注册为公共公司有限公司,以担任PTT Group的化学旗舰运营。自成立以来,GC一直致力于成为该行业的领导者,并将烯烃和芳香族与原油和冷凝物的精炼结合在一起。GC是泰国最大的集成石化和炼油业务,领先的
该药物受到其他监测。这将允许快速识别新的安全信息。您可以通过报告您或您的孩子可能会得到任何副作用来提供帮助。有关如何报告副作用,请参见第4节的结尾。在您或您的孩子得到此药物之前,请仔细阅读所有这些传单,因为它包含重要信息。- 保留此传单。您可能需要再次阅读。- 如果您还有其他问题,请询问您的医生或护士。- 如果您或您的孩子有任何副作用,请与您的医生或护士交谈。这包括此传单中未列出的任何可能的副作用。请参阅第4节。此传单中的内容1。Upstaza是什么,它用于2。您或您的孩子被赋予Upstaza3。如何将Upstaza送给您或您的孩子4。可能的副作用5。如何存储Upstaza6。包装和其他信息的内容1。什么是Upstaza,以及它用于Upstaza是Upstaza是一种基因治疗药物,其中包含活性物质Eladocagene Exuparvovec。Upstaza用于向上的Upstaza用于治疗18个月以上的患者,其蛋白质缺乏称为芳香族L-氨基酸脱羧酶(AADC)。这种蛋白质对于确保人体神经系统需要正常工作的某些物质至关重要。AADC缺乏症是由控制AADC产生的基因突变(变化)引起的遗传条件(也称为DOPA脱羧酶或DDC基因)。病情阻止了儿童神经系统的发展,这意味着在儿童时期,许多人体的功能无法正确发展,包括运动,饮食,呼吸,言语和精神能力。Upstaza如何运作Upstaza的活性物质Eladocagene Exuparvovec是一种称为腺相关病毒的病毒,已被修改为包括正确工作的DDC基因的副本。Upstaza是通过输注(滴水)到一个称为pe虫的大脑区域的,在该区域中制作了AADC。与腺相关的病毒允许DDC基因进入脑细胞。以这种方式,Upstaza使细胞能够产生AADC,从而使人体可以制造神经系统所需的物质。用于输送基因的腺相关病毒不会引起人类疾病。2。在您或您的孩子被赋予Upstaza之前,您或您的孩子不会被赋予Upstaza:
Vopak通过在Rayong Map Ta Phut中建造160,000立方米的储罐基础设施来支持将美国乙烷进口到泰国,从而达到了积极的最终投资决定,以扩大其全球工业终端足迹。Vopak的合资企业泰国坦克终端与全球领先的全球化学品公司PTT Global Chemical Companic Company Limited(GC)签署了具有里程碑意义的15年合同,用于在泰国储存和处理Ethane。根据本协议,泰国坦克航站楼将建造一个由长期合同支持的新的160,000立方米储罐基础设施,预计将于2029年完成。这种乙烷基础设施在战略上很重要。Ethane将作为石化饼干的长期原料供应,提高成本竞争力,原料安全性并加强泰国在全球化学工业中的领导地位。作为Vopak在泰国投资战略的一部分,Vopak计划在未来四年中分配约1.3亿欧元的储存和其他基础设施。这些投资与任何特定项目无关,并有望在调试后提供积累的运营现金回报。乙烷具有较低的碳足迹,与GC对可持续和负责任的运营的承诺保持一致。关于泰国坦克航站楼泰国坦克码头(TTT)是GC,Gulf Energy Development公共公司有限公司和Vopak Holding International B.V.Vopak在泰国坦克航站楼的股份为35%。Vopak在泰国坦克航站楼的股份为35%。它为液体化学物质和气体提供了存储和物流基础设施,以确保泰国最大的工业港口的Map Ta Phut的安全有效的终端操作。关于PTT全球化学PTT全球化学公共公司有限公司(GC),于2011年10月19日被注册为公共公司有限公司,以担任PTT Group的化学旗舰运营。自成立以来,GC一直致力于成为该行业的领导者,并将烯烃和芳香族与原油和冷凝物的精炼结合在一起。GC是泰国最大的集成石化和炼油业务,领先的
摘要:本研究的目的是通过文献计量学文献综述,在热解过程后确定聚苯乙烯螺旋霉素微粒的化学化合物含量以及其热解化学反应机制。使用傅立叶变换红外(FTIR)和气相色谱质量光谱(GC-MS)进行分析。通过将30 g的聚苯乙烯颗粒(尺寸为3000 µm)分解为105分钟,在120-190°C的范围内,在没有空气的情况下,进行了105分钟。该过程是在批处理反应器内完成的(长度x宽度x高= 44.5 cm x 35.5 cm x 25 cm),配备了一个连接到三个冷凝器(24°C)的出口。将冷凝器设置为串联,其中冷凝器1直接连接到反应器和连接器2连接的冷凝器1和3。热解会导致第一个冷凝器是一种两相液体,顶层中有褐色黄色的液体,底层中的无色和刺耳的液体。在第二和第三个冷凝器中,获得了无色和辛辣的液体。FTIR的结果表明在样品中检测到不同的化学成分。第一个,第二和第三冷凝器包含芳香族C = C键。第二和第三冷凝器具有相同的官能团,即H 2 O中的氢键,以及具有C -H弯曲烯烃的芳族官能团,这些算力也由FTIR原料所具有。通过GC-MS分析的结果表明,第二和第三个冷凝器含有苯乙烯,甲苯,乙酸甲酯,苄基环丙烷和其他苯乙烯衍生物。通过GC-MS分析的结果显示,在2-丙酮和苯甲胺化合物中发现的氧和氮的混合物。这个热解过程表明发生降解反应,其中聚苯乙烯被降解为小片段,例如苯乙烯和其他衍生物,例如苯,甲苯和甲苯和苯基苯。然而,由于存在氧和氮,热解是不完整的。这项研究对提供有关热解过程的想法和信息产生了有益的影响。这项研究还提供了用于在传统废物处理基础设施难以到达的领域的热解过程中的想法。本研究还旨在支持可持续发展目标(SDG)中的当前问题。
心脏纤维化是急性心肌梗塞(MI)和其他其他慢性疾病的共同特征,例如高血压,糖尿病和慢性肾脏疾病[1]。心力衰竭(HF)与高死亡率和生活质量差有关,并对卫生系统造成沉重负担。流行病学研究表明,根据2015年至2018年的数据,约有600万美国成年人患有HF。HF发病率在人口中达到每1000人10。许多研究强调,心脏纤维化的严重程度与心脏不良事件和死亡率相关[2,3]。心脏纤维化被定义为心肌外基质(ECM)蛋白质沉积(主要是胶原I和III)的增加,这会损害心脏功能。两种类型的心脏纤维病变已根据其定位和ECM蛋白质沉积的特征定义[4]。第一个是一个修复过程,也称为替代纤维化,被视为疤痕组织。在这种缺血性疾病中,心肌缺氧导致心肌细胞的坏死和凋亡,导致大量心脏细胞损失,这对于心脏功能至关重要。心肌细胞死亡启动了三联免疫反应,旨在清除细胞碎片并促进损伤的心肌替代以维持心脏功能[5]。第二种粘纤维病变是间质纤维化,其特征是胶原蛋白在内体和外膜中的弥漫性沉积。因此,这种间质纤维化经常有血管性纤维化,特定地被认为是慢性损伤继发的,例如压力超负荷(主动脉瓣狭窄,高血压),心脏炎症(心脏炎症)(心肌炎)和代谢性疾病(OBESITY,OBESITY,糖尿病,糖尿病,糖尿病)以及敏捷。在幸存的梗塞心脏中也经常观察到它在偏远地区发育的心脏。心肌间质纤维化发育改变了心肌结构和生理学,改变了左心室依从性,舒张功能和电连通性,导致芳香族病和不良后果(住院,死亡率)[6-8]。无论背景如何,间质性心脏纤维都与心脏功能障碍相关,并且众所周知,有或没有保留的射血分数有助于HF。