微塑料,即直径小于 5 毫米的塑料颗粒,是一种无处不在的污染物,从人类母乳到南极雪中随处可见。Fengqi You 和同事使用一系列工具来识别能够捕获和容纳微塑料的肽,这些肽可用于去除各种环境中的微小颗粒。
** 通信至:16 17 M. Anwar Hossain,博士 18 教授 19 微生物学系 20 达卡大学,孟加拉国达卡 21 电子邮件:hossaina@du.ac.bd 22 或者,23 Drs.马里兰州Mizanur Rahaman 24 助理教授 25 微生物学系 26 达卡大学,孟加拉国达卡 27 电子邮件:razu002@du.ac.bd 28 29 30 31 32
参考书目 /书目1。< / div>欧洲药典第10版。(2020)2.6.13。非菌群产品的微生物学检查:指定微生物的测试。2。美国药典42 NF 37(2019)<62>非菌群产品的微生物学检查:指定微生物的测试。3。日本药典第17版。(2017)4.05非菌群产品的微生物学检查:指定微生物的测试。4。en ISO 11133:2014+AMD1:2018。 食物,动物饲料和水的微生物学 - 制备,生产,存储和性能测试。 5。 ISO 21149:2017。 化妆品 - 微生物学 - 有氧中嗜性细菌的枚举和检测。en ISO 11133:2014+AMD1:2018。食物,动物饲料和水的微生物学 - 制备,生产,存储和性能测试。5。ISO 21149:2017。 化妆品 - 微生物学 - 有氧中嗜性细菌的枚举和检测。ISO 21149:2017。化妆品 - 微生物学 - 有氧中嗜性细菌的枚举和检测。
摘要:传统的抗病毒肽(AVP)发现是一个耗时且昂贵的过程。这项研究介绍了AVP-GPT,这是一种新型的深度学习方法,利用基于变压器的语言模型和专门为AVP设计设计的多模式体系结构。AVP-GPT表现出非凡的效率,在GPU系统上产生了10,000个独特的肽,并在两天内识别潜在的AVP。在呼吸道合胞病毒(RSV)数据集(AVP-GPT)中预先训练,成功地适应了流感病毒(INFVA)和其他呼吸道病毒。与LSTM和SVM等最新模型相比,AVP-GPT的困惑性显着降低(2.09 vs. 16.13)和较高的AUC(0.90 vs. 0.82),表明肽序列序列预测和AVP分类。AVP-GPT产生了一套具有出色新颖性的肽,并确定了抗病毒成功率明显高于常规设计方法的候选者。值得注意的是,AVP-GPT对RSV和INFVA产生了新的肽,具有出色的效力,其中包括四种肽,其EC50值在0.02 um左右,这是迄今为止报告的最强的抗RSV活性。这些发现突出了AVP-GPT彻底改变AVP发现和开发的潜力,从而加速了新型抗病毒药。未来的研究可以探索AVP-GPT在其他病毒靶标上的应用,并研究替代AVP设计策略。
癌症免疫疗法已成为癌症治疗的一种有希望的方法,被认为是手术干预,放疗,化学疗法和靶向治疗后的主要进步。免疫治疗药物的临床使用,尤其是靶向免疫检查点的抗体药物,显着增加了1。与仅针对肿瘤细胞的传统抗肿瘤药物不同,这些药物具有独特的作用机理,因为它们抑制了多种细胞类型的蛋白质 - 蛋白质相互作用,例如PD-1/ PD-L1阻断可能会在T细胞,肿瘤细胞,巨噬细胞,巨噬细胞和树突状细胞之间发挥作用(图1)。然而,在存在免疫介导的不良反应的情况下,及时戒断抗体疗法会带来很大的挑战,因为它们的分子量很高和长期寿命。大多数小分子化学药物的细胞摄取通常是可行的,但可能伴有脱靶效应。肽疗法占据了治疗剂光谱中单克隆抗体疗法和小分子化学药物之间的中间位置。肽具有明显的优势,包括明显的选择性,尤其是针对细胞表面的药物靶标,稳健浸润到实体瘤中,并易于合成;因此,它们是免疫检查点抑制的关键竞争者。然而,肽治疗剂的临床效用是由2个主要障碍物所影响的:生理环境内的酶促降解和次优的口服生物利用度。已经实施了各种方法,以避免递归降解,包括使用非天然氨基酸,环化修饰和镜像噬菌体
摘要:结直肠癌(CRC)通常涉及MDM2和MDM4过表达的野生型p53失活,从而促进了肿瘤的进展和对5-氟尿嘧啶(5-FU)的耐药性。破坏MDM2/4异二聚体可以熟练地重新激活p53,使癌细胞敏感到5-FU。在此,我们基于PEP3(1)开发了16种肽,这是唯一通过该机制作用的已知肽。新肽,尤其是3和9,与1相比,IC 50值较低。将纳米颗粒掺入肿瘤靶向的纳米颗粒中时,这些纳米颗粒对三种不同的CRC细胞系表现出细胞毒性。值得注意的是,NPS/ 9导致p53水平与其主要下游目标P21诱导细胞凋亡相关的p53水平显着增加。另外,9与5-FU的联合处理导致核仁应力的激活和协同凋亡效应。因此,MDM2/4异二聚体干扰物与5-FU通过纳米颗粒的共同传递可能是克服CRC中耐药性的有前途的策略。■简介
Cf. Cf. pp KK aa CH CH 3 3 NH NH 3 3 + + = = 10.62 10.62 ; ; - - CO CO 2 2 - - 也酸化,通过诱导酸化,通过诱导
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]
肽和蛋白质分别是氨基酸的短链和长链。表达的肽和蛋白质在生物学变异中起着重要而突出的作用,包括控制代谢,调节骨骼代谢,清除自由基,改变睾丸激素水平以及对某些疾病的治疗[1-6]。令人惊讶的是,只有二十个基因编码的氨基酸是自然界中发现的肽的基础,可以将其分为两个主要类别的亲水性和疏水性氨基酸。如方案1所示,ALA,Val,Leu,Ile,Met,Phe,Phe,Tyr和TRP的非极性烃链使它们成为亲脂性,疏水性氨基酸。虽然官能团的存在,例如羟基,酰胺,吡唑,鸟苷,胺,羧酸和硫醇,导致SER,THR,THR,THR,ASN,ASN,GLU,HIS,HIS,LYS,LYS,LYS,LYS,LYS,ASP,ASP,GLU,GLU,GLU,GLU,GLU,GLY,GLY,GLY和CYS的亲水性能(方案2)。这些氨基酸的排列共同导致具有不同亲水性,疏水性或两亲性特性的肽折叠[7]。
