摘要食品排毒中的抗氧化剂可以使细胞活性氧(ROS)和保护生物体。类黄酮是自然界重要的抗氧化剂起源之一,具有各种促进健康的功能,并且是模型和医疗植物中的热门研究主题。但是,主要粮食作物的小麦(Triticum Aestivum L.)的进展需要赶上。在这里,我们收集了200多个现代中国小麦品种,并分析了它们的类黄酮。一些小麦类黄酮在维生素C上显示出较高的ROS-氧化活性,但它们在谷物中的含量约为幼苗(小麦草)的1/20。小麦草的类黄酮提取物(很少)以剂量依赖性和性别特异性的方式成功拉长了模型动物的寿命(果蝇Melanogaster,W 118)。我们表征了主要的类黄酮和孤立的品种,积累了更多类黄酮。此外,茉莉酸(JA)处理诱导类黄酮生物合成,产生更多的类黄酮和较高的抗氧化电位。这项工作为有希望的小麦品种提供了信息,并采取了进一步的增强策略,以增强促进健康的潜力。
Abbot,E。B. (2020)。 他们与巴西的翅膀相关。 ,99,105106。 (2013)。 巴西气候分类。 Zeitschrift,22(6),711 - 728。 (2022)。 方法9 - 雏菊II孵化器中的酸性确定。 技术。 ADF方法,9,3。 AOAC。 (1990)。 化学化学办公室。 合作。 法律。 化学。 Argenta,F。M.,Brondani,I。L.,Filho,D。C. A.,Restore,J.,Segabinazzi,L.,Cattelam,J。,来自Paula,P.C。教学,O。 (2014)。 新手骨骼带有Silgem Silagmous Silhagine(高粱双色[L.] Mount)B。Semin:Systems Agrarias,35(2),951 - 962。 Behling,A.,Reiz,R。H. P. D.,L。D. S.,监狱。 不同用途的sor silge的营养价值。 环境和农业,41(3),288 - 299。 伯纳德(T. F.),丹尼尔(Daniel) (2018)。Abbot,E。B.(2020)。他们与巴西的翅膀相关。,99,105106。 (2013)。 巴西气候分类。 Zeitschrift,22(6),711 - 728。 (2022)。 方法9 - 雏菊II孵化器中的酸性确定。 技术。 ADF方法,9,3。 AOAC。 (1990)。 化学化学办公室。 合作。 法律。 化学。 Argenta,F。M.,Brondani,I。L.,Filho,D。C. A.,Restore,J.,Segabinazzi,L.,Cattelam,J。,来自Paula,P.C。教学,O。 (2014)。 新手骨骼带有Silgem Silagmous Silhagine(高粱双色[L.] Mount)B。Semin:Systems Agrarias,35(2),951 - 962。 Behling,A.,Reiz,R。H. P. D.,L。D. S.,监狱。 不同用途的sor silge的营养价值。 环境和农业,41(3),288 - 299。 伯纳德(T. F.),丹尼尔(Daniel) (2018)。,99,105106。 (2013)。巴西气候分类。Zeitschrift,22(6),711 - 728。(2022)。方法9 - 雏菊II孵化器中的酸性确定。技术。ADF方法,9,3。AOAC。 (1990)。 化学化学办公室。 合作。 法律。 化学。 Argenta,F。M.,Brondani,I。L.,Filho,D。C. A.,Restore,J.,Segabinazzi,L.,Cattelam,J。,来自Paula,P.C。教学,O。 (2014)。 新手骨骼带有Silgem Silagmous Silhagine(高粱双色[L.] Mount)B。Semin:Systems Agrarias,35(2),951 - 962。 Behling,A.,Reiz,R。H. P. D.,L。D. S.,监狱。 不同用途的sor silge的营养价值。 环境和农业,41(3),288 - 299。 伯纳德(T. F.),丹尼尔(Daniel) (2018)。AOAC。(1990)。化学化学办公室。合作。法律。化学。Argenta,F。M.,Brondani,I。L.,Filho,D。C. A.,Restore,J.,Segabinazzi,L.,Cattelam,J。,来自Paula,P.C。教学,O。(2014)。新手骨骼带有Silgem Silagmous Silhagine(高粱双色[L.] Mount)B。Semin:Systems Agrarias,35(2),951 - 962。 Behling,A.,Reiz,R。H. P. D.,L。D. S.,监狱。不同用途的sor silge的营养价值。环境和农业,41(3),288 - 299。伯纳德(T. F.),丹尼尔(Daniel)(2018)。青贮饲料评论:在寒冷地区制造的青贮饲料的独特挑战。乳业科学杂志,101,4001 - 4019。https://doi.org/10.3168/jds.2017-13703 Borreani,G.,Tabacco,E.青贮饲料评论:影响干物质和青贮饲料质量损失的因素。乳业科学杂志,101,3952 - 3979。https:// doi.org/10.3168/jds.2017-13837 Braga,A。,&Laurini,M。(2024)。巴西生物群落气候变化影响的空间异质性。科学报告,14(1),16414。https://doi.org/10.1038/S41598-024-024-67244-X Chaney,A.L。,&Marbach,E。P.(1962)。修饰试剂,用于确定尿素和氨的确定试剂。临床化学,8,130 - 132。https:// doi.org/10.1093/clinchem/8.2.130 Costa,R。F.,Pires,Pires,D。A. D. A.A. S.和Rigueira,J。P. S.(2016)。 高粱基因型的农艺特征和青贮饲料的营养价值。 Acta Scientiarum。 动物科学,38,127 - 133。https://doi.org/10.4025/ actascianimsci.v38i2.29567A. S.和Rigueira,J。P. S.(2016)。高粱基因型的农艺特征和青贮饲料的营养价值。Acta Scientiarum。动物科学,38,127 - 133。https://doi.org/10.4025/ actascianimsci.v38i2.29567
本研究涉及温度和对Tenebrio molitor的营养价值的影响,尤其是在粗蛋白,氨基酸,脂肪和脂肪酸剖面的含量上。tenebrio molitor幼虫在15、20和25°C中保存,并用小麦麸皮,小扁豆粉和混合物喂食。通过国际标准方法对参数进行了分析。通常,随着饲料中小扁豆的增加,粗蛋白含量增加。温度和进料的变化最为明显,在必需的氨基酸谷,ARG和LEU上。在用小麦麸皮的昆虫中,在20°C下确定了最高的平均脂肪含量。最低的脂肪含量是在15°C的麸皮昆虫中确定的。脂肪含量依赖于小扁豆粉的饲料中的温度以及小麦麸和小扁豆粉的混合物在统计上微不足道(P> 0.05,Kruskal – Wallis,Mann – Whitney Post HOC HOC测试)。在15°C和麸皮饮食的饲养温度下,获得了最高的多烯脂肪酸。得出的结论是,较高比例的蛋白质饮食可以增加昆虫中粗蛋白的含量。温度的升高通常仅导致硝基物质含量略有增加。因此,饲料对这种营养参数的影响比饲养温度的影响要重要得多。通常,可以说饲料和温度也会显着影响脂肪含量。
1个动物科学研究生课程(PPGCAN),兽医学院,帕拉联邦大学(UFPA),Castanhal 68746-360,宾夕法尼亚州,巴西; eder.b.rebelo@gmail.com(é.b.r.d.s。); camargojunior@gmail.com(R.N.C.C.-J.); adrinysantos2@gmail.com(A.D.S.M.L.); thomazguimaraes@yahoo.com.br(T.C.G.D.C.R.); joselourencojr@yahoo.com.br(J.D.B.L.-J.)2亚马逊联邦农村大学动物健康与生产研究所,贝利姆66000-000,巴西; jamileandrea@yahoo.com.br 3 Embrapa Eastern Amazon,Santarem 68010-180,宾夕法尼亚州,巴西; lucieta.martorano@embrapa.br 4亚马逊大学中心兽医系(UNAMA),圣塔勒姆68010-200,巴西,巴西; tatianebelovet@gmail.com(t.s.b.); cadu34.medvet@gmail.com(C.E.L.S.); rubensandrade.medvet@gmail.com(R.L.A。); gizelamedvet@gmail.com(A.G.D.S.S.S.); katarinacc4@gmail.com(K.C.D.C.)5农业和环境科学系,马托·格罗索联邦大学(UFMT),辛普78550-728,巴西,巴西; cvaufmt@gmail.com 6生物多样性与森林研究所 - 伊比夫,西方联邦大学(UFOPA),圣塔雷姆68040-255,宾夕法尼亚州,巴西; jucelane.lima@ufopa.edu.br(J.S.D.L.); kedson_neves@hotmail.com(K.A.L.N。)7帕尔萨尔大学联邦大学(UFPA)兽医学院,帕斯坦哈尔68740-000,巴西; silva_lilian@yahoo.com.br *通信:welligton.medvet@gmail.com;电话。: +55-(93)-988070692
丝状真菌在向更可持续的食品系统过渡过程中至关重要。虽然对这些生物进行基因改造有望提高真菌食品的营养价值、感官吸引力和可扩展性,但是缺乏用于食用菌株生物工程食品生产的基因工具和实际用例。在这里,我们为米曲霉开发了一个模块化合成生物学工具包,米曲霉是一种用于发酵食品、蛋白质生产和肉类替代品的食用真菌。我们的工具包包括用于基因整合的 CRISPR-Cas9 方法、中性位点和可调启动子。我们使用这些工具来提高食用生物质中营养麦角硫因和风味及颜色分子血红素的细胞内水平。过量生产血红素的菌株呈红色,只需极少的加工即可轻松制成仿肉饼。这些发现凸显了合成生物学在增强真菌食品方面的前景,并为食品生产及其他领域的应用提供有用的遗传工具。
大豆[Glycine Max(L.)Merr。]由于其有价值的种子成分,是全球重要的农作物,代表了全球农业贸易的最大,最集中的部分(Gale等,2019)。农作物在世界上可耕地的大约6%上种植,由于其独特的种子份量而被称为“金色奇迹豆”,约占总蛋白质餐食的70%,超过60%的全球油料生产总量(Hartman et al。,2011,2011; 2011; 2011; 2011年; 20122年;美国202222222222222岁; Vieira&Chen&Chen&Chen&Chen,2021。在2021年,世界大豆生产总计37170万吨(MT),巴西(134.9吨),美国(120.7吨)和阿根廷(46.2吨)(46.2吨)(FAO,2023年),巴西(134.9 MT),美国(120.7 MT)(FAO,120.7 MT),总计81.2%的生产。国际对大豆的需求是由独特的种子成分概况提供的多功能饲料,食物和工业最终用途的驱动的。这一需求也受到中国的影响很大,中国购买了65%的全球大豆供应(De Maria等,2020; Gale等,2019)。此外,与其他世界粮食作物相比,大豆的生产面积百分比最高,从1970年代到2010年代,并且在全球收获的地区和生产量中持续增长(FAO,2023; Hartman等,2011)。饲料和食品成分通常会影响大豆的整体生产,而工业目的历史上已经通过副产品获得了附加的价值。大豆种子由五个主要种子成分组成:蛋白质,油,碳水化合物(溶液和不溶性),灰分和水(通常显示为水分含量)。大豆粉(肥大,蛋白质,碳水化合物和灰分合并)通过营养元素,能量含量和饲料转化率来解释种子价值的大部分,而1吨大豆可以生产约79,000千克的餐食(USB,20222222; USSEC,2022)。因此,大多数大豆都被压碎,以将餐与其他成分(例如油)分开,以提取最高价值。
在全球和印度,园艺业都取得了显著增长。印度的蔬菜和水果产量位居第二,干洋葱产量居首。本文重点介绍了园艺作物对人类的饮食要求和营养价值。园艺产品,包括水果、蔬菜、坚果、种子和草本植物,对人类营养至关重要,提供必需的维生素、矿物质、纤维和生物活性化合物。柑橘和浆果等水果富含维生素 C,可促进免疫力和皮肤健康。同时,菠菜和西兰花等蔬菜提供的营养物质有助于骨骼、血液和癌症预防。坚果和种子提供健康的脂肪、蛋白质和矿物质,增强心脏和大脑健康,姜黄和生姜等草本植物提供抗氧化剂和抗炎功效。饮食建议强调每天食用多种园艺作物,包括水果(1.5-2 杯)、蔬菜(2-3 杯)和坚果/种子(1-2 盎司),以获得最佳健康。关键词:水果;蔬菜;营养;饮食
成千上万食物的免费营养价值。计算食谱的营养价值的可能性。可能会扫描某些食物的条形码以获得其营养价值并保持记忆力。用户输入的食物已由专业人士团队验证,以确保信息的有效性。使用多个数据库,并可能仅选择加拿大数据库(加拿大营养文件)。可能会删除每天显示卡路里数量的可能性。几个餐厅连锁店(主要是美国)的数据库。创建和保存配方的可能性。追踪睡眠的可能性。
3.注意事项 (1)禁止带入活物(包括生蔬菜) (2)标明保质期(配送后2小时) (3)主食若无特别规定必须彻底冷藏 (4)为避免食物中毒风险,必须慎重选择食品,并充分注意卫生 (5)送样时必须事先提交详细的内容和营养价值 A.列出菜单名称、食材名称、使用量、各菜单的营养价值 能量、蛋白质、食盐、食物纤维、碳水化合物、脂质 钙、维生素B1、B2、B6 B.营养价值以食品成分表第5版为基准计算 C.附表“详细的内容和营养价值等(示例)” (6)注明制造地点、专职员工人数、工作时间(送样时及配送时) (7)回收容器及剩余食品 (8)配送时必须实施适当的冷藏管理
提高低质量饲料的消化率,提高谷物的营养价值,去除饲料中的抗营养因素,提高保存饲料的营养价值,改善瘤胃功能,开发增强纤维素活性的转基因细菌,降低甲烷生产能力,提高氮“固定”能力等。