摘要:冷却塔是工业冷却系统中的关键部件,在散热和维持各种工艺的最佳工作温度方面发挥着重要作用。本研究重点关注微型冷却塔的设计、制造和性能评估,利用不同的冷却介质来评估其有效性和效率。该研究全面探索了冷却塔运行所依据的热力学原理,包括热交换、蒸发的力学原理和环境条件的作用。对材料进行了彻底的选择,以确保耐用性、成本效益和最佳热性能。设计阶段包括创建微型冷却塔的详细蓝图,考虑结构完整性、气流管理和水分配等因素。接下来是制造过程,通过精确的施工技术和组装方法将设计变为现实。使用三种不同的冷却介质进行性能评估:水、空气和纳米流体。水的比热容高,在传统冷却塔中广泛使用,因此对其进行了测试。空气因其减少用水量和环境影响的潜力而受到评估,而纳米流体因其增强的热性能而受到测试,以提高传热速率的能力。实验装置经过精心设计,以模拟真实世界的运行条件,并采用精确的测量仪器来捕获性能指标,例如温度下降、传热速率和总体效率。对数据的比较分析可以深入了解每种冷却介质在不同环境条件下的相对性能。该研究的结果有助于更深入地了解冷却塔动力学,并强调了优化设计以提高效率和可持续性的潜在途径。未来研究和开发的建议侧重于先进材料和创新冷却介质,以进一步提高冷却塔在工业应用中的性能。关键词:微型冷却塔、冷却介质、热力学、性能评估、纳米流体
摘要在本文中探讨了子系统在页面曲线中的共同信息所起的作用。与由黑洞和辐射组成的总系统以及岛上的包含,我们观察到,B +和B-之间的互信息消失了,这又意味着纠缠楔的断开相对应于B + b + b--,产生了乱七八糟的时间。这会导致与正确页面曲线一致的鹰辐射的细粒度熵的时间独立表达。我们还发现了以对数和反向幂定律形式的熵和页面时间的纠正。从重力理论的角度来看,信息损失悖论一直是最基本的问题之一[1,2]。对于蒸发的黑洞,已经表明,相对于观察者的时间,辐射单调的熵增加。但是,单一进化的过程要求在蒸发过程结束时这种熵消失。为此而言。在物质崩溃之前,全曲片上的量子场状态是纯净的,在黑洞蒸发后应保持相同。此外,页面曲线[3,4]描绘了辐射熵的时间依赖性。页面曲线有效地通过引入称为页面时间t p的时间尺度来解决信息丢失悖论的问题。根据页面曲线的信息损失悖论可以理解如下。霍金辐射的细粒度熵是由黑洞外部区域R上的量子场的von Neumann熵确定的。现在假设完整的cauchy片上的状态为纯状态,辐射s(r)= s(r c)的细粒熵,其中s(r c)可以理解为纤维粒的熵
摘要 许多增材制造 (AM) 技术依赖于粉末原料,粉末原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,通过额外的机械和热界面通量来整合快速蒸发的影响。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在由于相变和耦合的微流体-粉末动力学而动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
许多增材制造 (AM) 技术都依赖于粉末原料,这些原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流动和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,快速蒸发的影响通过额外的机械和热界面通量来整合。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
非蒸发的液体燃料膜是汽油直接注入发动机烟灰形成的主要原因。在这项研究中,开发了一种UV-VIS吸收技术,以在加热的恒流实验中直接注射后的燃料膜厚度成像。一个六孔GDI喷油器将燃料在100栏上喷涂到距喷嘴30毫米的透明板上。燃料由30%甲苯 / 70%的Iso-octane(分别为383和372 K)组成。气体和壁温度分别为376和352 K,气压1 bar。燃料的蒸发部分被点燃,随后的燃烧膜旁边的燃烧导致了烟灰的形成。在加剧的高速CMOS摄像头上成像了从脉冲LED照明中传输散射的背光。液态甲苯的紫外线吸光度为265 nm的LED。然而,在这种波长下,甲苯蒸气吸收,液体散射,烟灰和烟灰前体的灭绝以及烟灰白幕都干扰了液体燃料的吸光度。为了估计散射和烟灰消光的贡献,将310、365和520 nm处的LED添加到梁路径中,并以32 kHz的帧速率在高速摄像头上与连续的帧相吻合。获得了一个深色框架以说明烟灰阴影,以使所得5图像序列的重复速率为6.4 kHz。通过在先前的工作中开发的形态图像处理估算了甲苯蒸气的吸收,以将弥漫性的,移动的蒸气云与燃料膜的锋利,固定特征分开。允许获得时空分辨的燃油膜厚度测量和有关烟灰的其他信息的多光谱方法。
摘要 许多增材制造 (AM) 技术依赖于粉末原料,粉末原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,通过额外的机械和热界面通量来整合快速蒸发的影响。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在由于相变和耦合的微流体-粉末动力学而动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
关键字:通量角,蒸发,步骤覆盖,形成膜增长抽象典型蒸发过程始于10e-7 Torr范围。在这种高真空状态下,由于较长的平均自由路径,蒸发过程具有视线特征。设计用于升降机过程的蒸发器采用晶圆圆顶,其球形半径与源位置相匹配。与产生逆行角或底切轮廓的光刻过程相结合,该组合可以使清洁的金属升降机脱离。但是,相同的视线属性促进了金属提升的效果,从而导致了非保形步骤覆盖范围。使用常规的蒸发方法,共形步骤覆盖范围会导致升空难度。在这项工作中,我们将讨论雷神RFC最近开发的技术,该技术与标准升降机蒸发器相比提供了单向步骤覆盖优势。通过使用振荡晶圆运动,蒸发通量可以达到通常因膜增长而遮蔽的特征,从而改善台阶覆盖范围。此方法适用于希望在一个方向上的共形覆盖范围的应用。i ntrodruction金属化是通过大量蒸发的,然后是升降机以去除不需要的金属。电子束蒸发是一个简单有效的金属化过程。由于该过程通常在高真空下开始,因此涂层由于较长的平均自由路径而具有视线属性。不足的逆行角将在光震托上产生薄薄的金属层。产生逆行角度或产生垂直轮廓的双层过程的图像逆转照片过程将导致金属薄膜覆盖范围的不连续性,从而使清洁升降机可行。升空后,多余的金属将变成诸如纵梁,机翼或襟翼之类的缺陷。不幸的是,有益于提升过程的质量对于阶跃覆盖范围并不是最佳的。图1显示了一个金属层在另一个金属层上的阶梯覆盖的示例,该金属层由介电膜分开。
动态卡西米尔效应 (DCE) [1-4] 是一种著名的多学科现象,在量子场、原子物理、凝聚态和纳米技术应用,甚至天体物理学、宇宙学和引力等许多物理学领域都发挥着重要作用。DCE 的影响范围如此广泛,是因为它和盎鲁效应 [5] 一样,源于物理系统固有的量化场零点涨落。著名的理论研究 [6-8] 促成了实验(第一个是 [9]),这些实验成功验证了 DCE 的存在(见此处的教学概述:[10])。DCE 的量子加速辐射与霍金效应 [11] 有着密切的联系,可能为引力和加速度之间的量子关系提供实验数据。研究有限能量产生的加速辐射在物理上具有很好的动机。例如,在黑洞蒸发的情况下,这是一个明显的迹象,表明演化已经完成,高能辐射已经停止,能量守恒得到维持。对于平坦 (1+1) 维时空中的一个完全反射边界点,DeWitt-Davies-Fulling 的正则移动镜像模型 [ 2 – 4 ] 可以得到简单的有限能量总产生解(例如,40 年前 Walker-Davies 的解首次得出了有限能量的产生 [ 12 ])。最近,人们发现了几个有限能量镜像解,它们与强引力系统有着密切的联系。这些引力模拟模型被称为加速边界对应 (ABC)。无限能量 ABC 解对应于最著名的时空,例如 Schwarzschild [ 13 ]、Reissner-Nordström (RN) [ 14 ]、Kerr [ 15 ] 和 de Sitter [ 16 ]。有限能量 ABC 解紧密刻画了众所周知的有趣弯曲时空终态,包括极值黑洞(渐近均匀加速镜 [ 15 , 17 – 20 ])、黑洞残余(渐近恒速镜 [ 21 – 26 ])和完全黑洞蒸发(渐近零速度镜 [ 12 , 27 – 32 ])。尽管取得了这些进展,但要找到粒子谱简单的镜像解却非常困难。只有两个已知解具有解析形式,其中一个的谱
g热热泵(GHP)是一项相对较新的技术,可以为房主省钱。这些地面源热泵使用地球或地下水的天然热量存储能力提供节能加热,热水。地热加热比电阻加热更有效。这些系统通常也比天然气或油发热系统更有效。它们比空气源热泵更节能,因为它们从全年的温度中吸收或释放热量,而不是向空气释放高温(通常在冬季比地球更冷,而夏季比地球更温暖,从而导致热传热较低)。地热热泵显示出在空气热泵上节省能源,因为它们从地球恒温(通过埋在地球上的水管中)提取能量,以调节房屋中的空气。从某种意义上说,地热是一种部分可再生的能量形式。加热培养基在管道中从钻孔中抽出,并将其传递给热泵的蒸发器,其能量被另一个闭合电路中循环的制冷剂吸收。蒸发的制冷剂被压缩到压缩机中,并导致温度升高。温暖的制冷剂被喂入放在锅炉水中的冷凝器中。在这里,制冷剂将其能量释放到锅炉水中,以使其温度下降,制冷剂从气体变为液体。制冷剂然后通过过滤器移至膨胀阀,在该一个膨胀阀中,压力和温度进一步降低。02。03。制冷剂现在已经完成了其电路,并且由于收集器从能源携带的能量的影响,再次将其蒸发到蒸发器中。特征:01。将来以越来越多的速度逐渐减少成本锥度。加热不含维护。您的房屋不含排放 - 适合您的个人环境。04。您不必担心您的能源供应消失。05。无需额外的锅炉室。06。您不需要烟囱或额外的坦克室。07。对您和您的亲人没有燃料的危险。08。无气连接。09。您有助于节省重要的资源。
在这篇评论中,我们讨论了黑洞信息悖论方面的一些最新进展。在深入研究之前,让我们先讨论一下总体动机。研究量子引力的主要动机之一是了解宇宙的最初时刻,我们预计量子效应占主导地位。在寻找这一理论时,最好考虑更简单的问题。一个更简单的问题涉及黑洞。它们的内部也包含一个奇点。这是一个各向异性的大挤压奇点,但这也是量子引力必不可少的情况,因此很难分析。然而,黑洞为我们提供了从外部研究它们的机会。这更简单,因为远离黑洞我们可以忽略引力的影响,我们可以想象提出尖锐的问题,从远处探测黑洞。这些问题之一将成为这篇评论的主题。我们希望,通过研究这些问题,我们最终能够理解黑洞奇点,并为大爆炸吸取一些教训,但我们不会在这里这样做。70 年代对黑洞的研究表明,黑洞表现为热物体。它们的温度会导致霍金辐射。它们还具有由视界面积决定的熵。这表明,从外部的角度来看,它们可以被视为一个普通的量子系统。霍金通过我们现在所知的“霍金信息悖论”反对这一想法。他认为黑洞会破坏量子信息,而宇宙的冯·诺依曼熵会因黑洞形成和蒸发的过程而增加。90 年代使用弦理论(一种量子引力理论)的结果为研究非常具体的引力理论的这一问题提供了一些精确的方法。这些结果强烈表明信息确实会出现。然而,目前的理解需要量子系统具有某些对偶性,而时空的几何形状并不明显。在过去的 15 年中,人们对引力系统的冯·诺依曼熵有了更好的理解。熵的计算也涉及表面面积,但表面不是视界。它是一个使广义熵最小化的曲面。这个公式几乎和黑洞熵的贝肯斯坦公式一样简单 [1,2]。最近,该公式被应用于黑洞信息问题,提供了一种计算霍金辐射熵的新方法 [3,4]。最终结果与霍金的结果不同,但与幺正演化一致。细粒度熵公式的第一个版本由 Ryu 和 Takayanagi [5] 发现。随后,许多作者对其进行了改进和推广 [3,4,6–11]。最初,Ryu-Takayanagi公式被提出来计算反德西特时空中的全息纠缠熵,但目前对这个公式的理解更为普遍。它既不需要全息术,也不需要纠缠,也不需要反德西特时空。相反,它是与引力耦合的量子系统的细粒度熵的通用公式。