1美国贝勒医学院病理与免疫学系的药物发现中心,美国德克萨斯州休斯敦77030,美国。2 Verna和Marrs McLean生物化学与分子药理学系,贝勒医学院,德克萨斯州休斯敦77030,美国。3,明尼苏达州明尼阿波利斯,明尼苏达州,明尼苏达州,分子生物学和生物物理学系,分子生物学和生物物理学,美国明尼苏达州55455,美国。4美国贝勒医学院国家热带医学院儿科系,美国德克萨斯州休斯敦77030。 5美国德克萨斯州贝茨街1102号,德克萨斯州休斯敦市贝茨街1102号疫苗开发中心,美国德克萨斯州77030,美国。 6伯克利结构生物学中心分子生物物理学和综合生物成像,劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利94720,美国。 7,德克萨斯大学圣安东尼奥大学生物化学与结构生物学系,德克萨斯州圣安东尼奥市,美国78229,美国。 8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。 9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。 10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。 ✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu4美国贝勒医学院国家热带医学院儿科系,美国德克萨斯州休斯敦77030。5美国德克萨斯州贝茨街1102号,德克萨斯州休斯敦市贝茨街1102号疫苗开发中心,美国德克萨斯州77030,美国。 6伯克利结构生物学中心分子生物物理学和综合生物成像,劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利94720,美国。 7,德克萨斯大学圣安东尼奥大学生物化学与结构生物学系,德克萨斯州圣安东尼奥市,美国78229,美国。 8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。 9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。 10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。 ✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu5美国德克萨斯州贝茨街1102号,德克萨斯州休斯敦市贝茨街1102号疫苗开发中心,美国德克萨斯州77030,美国。6伯克利结构生物学中心分子生物物理学和综合生物成像,劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利94720,美国。7,德克萨斯大学圣安东尼奥大学生物化学与结构生物学系,德克萨斯州圣安东尼奥市,美国78229,美国。8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。 9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。 10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。 ✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu
1迄今为止,Inserm,UMR_S1176,巴黎 - 萨克莱大学,克里姆林宫 - 贝克特·塞德克斯,法国2号,法国2号医学复苏系,欧洲医院乔治·庞皮德,法国,法国,法国3号,医学院3,密集型医学居民,斯特拉斯布尔格大学医学院,史特拉斯布尔大学,史特拉斯布尔大学,新知识,新知识。研究),法国斯特拉斯堡的再生纳米医学(RNM),法国斯特拉斯堡5 APHP,血液学实验室,法国大学医院颈部梅勒斯,法国6分子免疫性肿瘤学,实验室,实验室transex transplantex,血液学和血液学医学研究中心,大学医院联邦研究中心(FHU)。 (FMTS),斯特拉斯堡大学,法国斯特拉斯堡7
特异性和注释它识别为65-76KDA的蛋白质,该蛋白质被鉴定出抗促胰蛋白酶(AACT)。AACT是在肝脏中合成的血浆蛋白酶抑制剂作为单个糖肽链。在人类中,正常的AACT血清水平约为十分之一?1-抗胰蛋白酶(AAT),它具有核酸和蛋白质序列同源性。两者都是主要的急性相应物;它们在血浆中的浓度增加了创伤,手术和感染。在AD患者的脑脊液和血浆中,AACT水平的升高是广泛但不是普遍报道的。前列腺特异性抗原(PSA)及其具有AACT的SDS稳定复合物已广泛用作诊断前列腺癌的标志物。ACT缺乏也可能是慢性肝病的可能原因。a肌肉与组织细胞和组织细胞肿瘤反应。它被广泛用于鉴定从中得出的组织细胞和肿瘤。胰腺和唾液腺的腺泡肿瘤也可能表现出ACT阳性。
Genevieve Marcoux(瑞典隆德大学)AudréeLaroche(加拿大Chu deQuébec)Stephan Hasse(加拿大Chu deQuébec)Marie Bellio(加拿大Chu deQuébec,加拿大)魁北克) Zufferey(Quebec -Quebec-加拿大拉瓦尔大学)TaniaLévesque(加拿大微生物学和免疫学系)Johan Rebetz(瑞典实验室医学)Johan Rebetz(Annie Karakeussian) (加拿大蒙特利尔大学研究中心)Sylvain Bourgoin(加拿大魁北克大学医院中心研究中心)HindHindHindHindHindHindHindhindite Jean Monnet-Universite de Lyon,Fabrice de Lyon,Fabrice Cognasse(Lyon; French of Lyon; French Blass; French Blass; efs)荷兰)约翰·塞姆普尔(瑞典隆德大学)玛丽·乔斯·赫伯特(Marie-JoséeHebert)(加拿大蒙特利尔大学)法国皮雷恩(Paris University Paris是Créteil,Inserm U955加拿大蒙特利尔)Benoit Vingert(法国血液建立)Eric Boilard(Chu de Quebec,加拿大)
针对 SARS-CoV-2 主要蛋白酶 (M pro ) 的药物是已进入临床使用的有效治疗方法。这些药物的大规模使用将对耐药突变的进化施加选择压力。为了了解 M pro 的耐药潜力,我们对可能导致酵母筛选对尼玛瑞韦 (包含在药物 Paxlovid 中) 和目前处于 III 期试验的恩西瑞韦 (Xocova) 产生耐药性的氨基酸变化进行了全面调查。最近在尼玛瑞韦的多项病毒传代研究中报告的最具影响力的耐药突变 (E166V) 对尼玛瑞韦显示出最高的耐药性评分,而 P168R 对恩西瑞韦显示出最高的耐药性评分。使用系统方法评估潜在的耐药性,我们发现了 142 种尼玛瑞韦耐药突变和 177 种恩西瑞韦耐药突变。在这些突变中,有 99 种对两种抑制剂都产生了明显的耐药性,这表明很有可能出现交叉耐药性。许多表现出抑制剂特异性耐药性的突变与每种抑制剂突出底物包膜的不同方式一致。此外,具有强耐药性评分的突变往往功能减弱。我们的结果表明,尼玛瑞韦或恩西特瑞韦的强大压力将选择多种不同的耐药谱系,这些谱系将包括削弱与药物相互作用同时降低酶功能的原发性耐药突变和增加酶活性的继发性突变。全面识别耐药突变使得能够设计出具有降低耐药性潜力的抑制剂,并有助于监测循环病毒群中的耐药性。
AAT的缺乏是一种常染色体,共同主导的遗传疾病,本身不是一种疾病,而是疾病后期发展的倾向。 AAT的低血清水平与其他遗传确定的特征和环境影响,导致疾病状态的发展(例如,肺)。 流行病学研究的证据表明,在肺似乎受到保护的血清阈值水平以上。 血清阈值水平在11个微孔中,约占平均正常水平的35%。 已经确定了30多种遗传变异,导致AAT水平不足。 最常见的等位基因称为M;大多数人具有蛋白质表型Pi*mm。 AAT基因型赋予患肺部疾病风险增加的风险增加的基因型是那些缺乏或无效等位基因(在纯合或杂合状态下)编码AAT水平以下的AAT水平低于保护阈值的缺乏或无效等位基因。 无效等位基因(指定为Pi Qoqo)与最严重的缺陷相关,没有产生活性AAT,或者少于正常量的血浆AAT的1%。 最常见的AAT等位基因是Z变体和Pi*Zz 的个人AAT的缺乏是一种常染色体,共同主导的遗传疾病,本身不是一种疾病,而是疾病后期发展的倾向。AAT的低血清水平与其他遗传确定的特征和环境影响,导致疾病状态的发展(例如,肺)。 流行病学研究的证据表明,在肺似乎受到保护的血清阈值水平以上。 血清阈值水平在11个微孔中,约占平均正常水平的35%。 已经确定了30多种遗传变异,导致AAT水平不足。 最常见的等位基因称为M;大多数人具有蛋白质表型Pi*mm。 AAT基因型赋予患肺部疾病风险增加的风险增加的基因型是那些缺乏或无效等位基因(在纯合或杂合状态下)编码AAT水平以下的AAT水平低于保护阈值的缺乏或无效等位基因。 无效等位基因(指定为Pi Qoqo)与最严重的缺陷相关,没有产生活性AAT,或者少于正常量的血浆AAT的1%。 最常见的AAT等位基因是Z变体和Pi*Zz 的个人AAT的低血清水平与其他遗传确定的特征和环境影响,导致疾病状态的发展(例如,肺)。流行病学研究的证据表明,在肺似乎受到保护的血清阈值水平以上。血清阈值水平在11个微孔中,约占平均正常水平的35%。已经确定了30多种遗传变异,导致AAT水平不足。最常见的等位基因称为M;大多数人具有蛋白质表型Pi*mm。AAT基因型赋予患肺部疾病风险增加的风险增加的基因型是那些缺乏或无效等位基因(在纯合或杂合状态下)编码AAT水平以下的AAT水平低于保护阈值的缺乏或无效等位基因。无效等位基因(指定为Pi Qoqo)与最严重的缺陷相关,没有产生活性AAT,或者少于正常量的血浆AAT的1%。最常见的AAT等位基因是Z变体和Pi*Zz
。CC-BY-NC-ND 4.0 国际许可证 它是永久可用的。 是作者/资助者,已授予 medRxiv 许可以显示预印本(未经同行评审认证)预印本 此版本的版权所有者于 2025 年 2 月 6 日发布。;https://doi.org/10.1101/2025.02.04.25321701 doi:medRxiv 预印本
T细胞急性淋巴细胞白血病(T-ALL)患者通常没有5年的无事件生存期。临床实践中唯一的T-All特定药物是Nelarabine。脱氧鸟苷类似物ARA-G的前药,Nelarabine是一种理性设计的药剂,可用于治疗T细胞恶性肿瘤。最初被批准用于复发/难治性T-ALL,它越来越多地用于T-ALL治疗,目前正在前期治疗中进行评估。虽然纳拉滨的临床使用一直是多个评论文章的主题,但缺乏详细介绍其抗白血病活动的分子基础的临床前数据的详细概述,这对于基于机械的使用至关重要。因此,在本文中,我们对文献进行了半系统评论,并批判性地评估了Nelarabine分子药理学的临床前知识。虽然早期研究将ARA-G三磷酸化为主要活性代谢产物和核DNA合成是关键目标,但仍有许多基本问题仍然可以告知未来对这种疗法的使用。其中包括奈拉滨诱导的DNA病变的性质及其修复,以及其他ARA-G代谢物的细胞靶标及其在效率和毒性中的作用。在当前的T-All化学疗法方案和新兴的抗白血病药物的背景下,对Nelarabine组合疗法进行了研究的关键途径是对Nelarabine组合疗法的研究,我们强调了一些追求的领域。总的来说,我们讨论了从整体上可以从临床前文献中学到的知识,并介绍了我们在T-All中对Nelarabine治疗的未来研究的看法。
胃食管反流疾病(GERD)是一种常见的胃肠道疾病,对发展中国家和发达国家的种群显着影响。由于固有的病理和外在危险因素,GERD的发生率在近几十年来大幅上升。这种疾病是由于食道的防御机制与流动型的有害作用之间的不平衡。胃蛋白酶是一种仅由胃分泌的酶,由于其在酸性环境中的侵入性作用,在GERD的发病机理中起着至关重要的作用。通过彻底了解胃蛋白酶引起的GERD的发病机理,我们可以更好地解决其在临床实践中的诊断和治疗潜力。尽管当前的诊断工具被广泛使用,但它们有几个限制。结果,研究人员越来越专注于唾液胃蛋白酶测试,唾液胃蛋白酶测试是一种新型诊断方法,利用胃蛋白酶的特定病理机制。为了克服当前使用的唾液胃蛋白酶测试的缺点,荧光反应检测已与其他技术集成。超出其诊断意义,唾液中的胃蛋白酶还可以作为创新临床试验中GERD管理的目标。在这篇综述中,我们总结了GERD诊断和管理方面的最新进步,以改善患者预后。
。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 21 日发布。;https://doi.org/10.1101/2025.01.16.633339 doi:bioRxiv 预印本