。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月7日。 https://doi.org/10.1101/2022.10.07.511265 doi:Biorxiv Preprint
蓝细菌是唯一能够进行氧合光合作用的原核生物。许多蓝细菌菌株可以生活在不同的营养模式下,从光自营养和异养性到综合营养的生长。然而,允许这些生活方式之间的灵活切换的调节机制知之甚少。作为Ca-Benson-Bassham(CBB)周期和分解代谢糖降解途径中CO 2的合成代谢固定,需要密集的调节网络,以启用同时进行的反对代谢流动物。最近将Entner-Doudoroff(ED)途径视为一种糖酵解途径,该糖酵解途径与糖原崩溃中的其他途径合作。尽管通过ED途径低碳浮标,但在ED途径中对突变体的代谢分析表明,表现出明显的表型,表明该途径的强烈调节作用。小的CP12蛋白通过抑制磷酸氨基胰蛋白酶和3-磷酸甘油醛脱氢酶来下调黑暗中的CBB循环。对具有CP12变体菌株的代谢组和氧化还原水平分析的新结果扩展了CP12调节在昼夜条件下对适应外部葡萄糖供应的已知作用,以及在光中对CO 2水平的发挥作用。此外,碳和氮代谢与维持必不可少的C/N稳态密切相关。小蛋白质PIRC被证明是磷酸甘油酸突变酶的重要调节剂,该酶将这种酶鉴定为CBB循环降低糖酵解的碳分配的中心分支点。在氮饥饿实验期间,突变体D PIRC的代谢物水平改变了这种调节机制。在关键的代谢分支点调节碳分配的新机制可以确定碳流向所需化合物的靶向重定向的方法,从而有助于进一步建立蓝细菌作为绿细胞工厂,作为生物技术应用,并同时利用日光和co2。
据报道,许多具有经济价值的甲壳类动物都患有壳病(Sindermann 1989a),与各种环境条件有关(Noga 1991)。壳病的发病机理被认为是多因素的,并受到表皮层机械损伤的强烈影响;入侵细菌(Cook & Lofton 1973、Baross 等 1978、Malloy 1978)和真菌(Alderman 1981)的几丁质破碎活性;以及外部因素,包括水和土壤污染物、低溶解氧和高营养负荷(Young & Pearce 1975、Engel & Noga 1989、Sindermann 1989b)。Sindermann(1989a)对这些过程进行了综述。正常蜕皮间期螃蟹的表皮由外上表皮、外表皮、内表皮和表皮组成(Johnson 1980)。在以前的壳病报告中,病变经常在上表皮破裂后发展,然后发展为糜烂或完全表皮溃疡(Sindermann 1989b)。相比之下,我们描述了一种泥蟹壳病
连接表皮溶解Bullosa(JEB)是一种令人衰弱的遗传性皮肤疾病,由编码Lam-Inin-332,XVII型胶原蛋白(C17)的基因突变引起,并综合素6 B 4,维持模糊和表皮之间的稳定性。我们签署了患者特异性的cas9-核酸酶和基于 - 基因酶的靶向策略,用于在Col17a1的外显子52中重新构建与缺乏全长C17表达相关的共同纯合子deportion。随后对蛋白质的重新修复,糖节组成以及治疗后的DNA和mRNA结局的发散表明,基于成对的基于成对的COL17A1编辑的吉利效率,安全性,安全性和精度。几乎46%的原发性jeb角细胞表达了C17。重新构架Col17a1 tran-文字主要具有25和37-nt的缺失,占所有编辑的> 42%,编码C17蛋白质变体,可准确地定位于细胞膜。此外,与未处理的JEB细胞相比,经过校正的细胞显示出精确的细胞外120 kDa C17结构域的精确脱落,并提高了对层粘连蛋白332的粘附能力。三维(3D)皮肤等效物在表皮和真皮之间的基底膜区域内表现出C17的认可和连续沉积。我们的发现构成了第一次基于基因编辑的Col17a1突变的校正,并证明了基于Cas9 D10A Nickase比野生型CAS9 Cas9基于野生型Cas9策略在临床环境中基于基因重塑的Prox-Imal配对迹象策略的优越性。
通常,皮肤界面微系统可提供生理特性的精确、连续测量,在医疗保健、军事准备和体育运动中具有潜在应用 1 – 3 。它们优于传统可穿戴系统的地方在于能够与皮肤建立舒适而亲密的界面。除了依赖无源比色传感器的设备 4 – 6 之外,所有皮肤安装平台都需要电源 7 – 10 。纽扣电池和薄膜电池仍然是最广泛使用的选择,但它们的重量、厚度和尺寸会妨碍皮肤界面的设计 11 – 13 。利用身体运动 14、15、汗水 16 – 18 或环境光 19 – 22 发电的柔性/可拉伸能量收集系统可以克服其中的一些问题。然而,能量收集方法通常产生的能量输出较低且不一致,依赖升压转换器并需要额外的组件来存储能量。使用远场或近场耦合从附近天线无线收集射频电能提供了另一种可能有用的方法 23 – 27 ,但需要靠近传输天线是一个限制。由于缺乏为皮肤界面设备供电的通用解决方案,推动了以纺织品和柔性或可拉伸片材 28 形式出现的先进电池技术的研究,主要关注锂离子 29、30 或碱性 31 – 34 化学物质。超级电容器中的类似平台依赖于由聚合物膜隔开的对称或非对称电极,通常装有碱性电解质 35、36 。这些技术克服了与能量收集方法相关的一些缺点,并在为发光二极管和简单
本报告描述了狗在狗中对有毒表皮坏死(十)的局部外泌体治疗的积极结果。在尿道病手术后的第二天和7天,皮下施用了霉素。停止治疗后的十四天,将狗送到诊所,以在背侧区域散布浅表组织丧失,这与不良药物反应有关,基于评估表皮坏死的药物因果关系的评估。牛衍生的脐带血外泌体以100万千克的剂量每天两次施用,并在伤口周围的多个点进行皮内和喷雾路线。每周监测狗,并在治疗后58天观察到完全恢复。本报告表明,局部异构外泌体可能是狗伤口愈合的另一种治疗方法。
anexe ....................................................................................................
医学遗传学的一个基本问题是遗传背景如何改变突变的表型结果。我们通过关注线虫表皮中表现出干细胞特性的接缝细胞来解决这个问题。我们证明,与接缝细胞命运维持有关的 GATA 转录因子 egl-18 的假定无效突变在夏威夷的 CB4856 分离株中比在布里斯托尔的实验室参考菌株 N2 中更耐受。我们确定了两个分离株之间表型表现力差异的多个数量性状基因座 (QTL)。这些 QTL 揭示了通过增强 Wnt 信号传导来强化接缝细胞命运的隐秘遗传变异。在一个 QTL 区域内,CB4856 中的热休克蛋白 HSP-110 中的单个氨基酸缺失足以改变 Wnt 信号传导和接缝细胞发育,强调保守的热休克蛋白的自然变异可以塑造表型表现力。
基因组编辑的技术,能够引入DNA序列中的精确变化,有可能导致新的遗传疾病治疗方法。表皮溶解Bullosa(EB)是一组以极端皮肤脆弱性为特征的稀有遗传疾病。具有最严重的表型之一的EB(RDEB)的隐性营养不良亚型,是由Col7a1突变引起的。在这项研究中,我们报告了一种基因编辑方法,用于基于体内同源指导的修复(HDR)基因校正,该方法使用了CRISPR-CAS9系统,该系统使用核糖核蛋白(RNP)复合物与供体与adeno相关的Veral Veral Vec-Vec-vec-tors(AAVS)结合使用。我们证明了在原代rdeb ker-固有细胞中实现含有疗法的舒适突变校正频率,其中包含不同的COL7A1突变以及有效的HDR介导的HDR介导的COL7A1模量,可在健康的索有索有索有线山脉CD34 +细胞和细胞中的细胞中(MSC)。这些结果是HDR介导的基因校正的概念证明,其不同细胞类型具有RDEB的治疗潜力。