讲座总数:42 讲座分类 讲座数 1. MOS 电容器:金属-氧化物-半导体接触的能带图,操作模式:积累、耗尽、中间带隙和反转,MOS 的一维静电,耗尽近似,泊松方程的精确解,MOS 的 CV 特性,LFCV 和 HFCV,MOS 中的非理想性,氧化物固定电荷,界面电荷,中间带隙栅极电极,多晶硅接触,非均匀衬底掺杂的静电,超薄栅极氧化物和反转层量化,量子电容,MOS 参数提取
Si 基光子集成电路 (PIC) 将光学活性元件单片集成在芯片上,正在改变下一代信息和通信技术基础设施 1。在寻找基本的直接带隙的过程中,人们对 IV 族半导体合金进行了深入研究,以获得电泵浦连续波 Si 基激光器。沿着这条路径,已经证明可以通过化学计量和应变工程将新开发的 GeSn/SiGeSn 异质结构的电子带结构调整为直接带隙量子结构,从而为激光提供光增益 2。在本文中,我们介绍了一种多功能电泵浦激光器,它在低温下发射近红外波长为 2.35 µm 的低阈值电流为 4 mA(5 kA/cm 2)。它基于 6 周期 SiGeSn/GeSn 多量子阱结构,沉积在具有弛豫 Ge 缓冲层的 Si 衬底上。通过定义一个圆形台面结构来制作小尺寸微盘腔激光器,该结构蚀刻穿过层堆栈直至 Si 衬底。随后,通过去除此区域的 Ge 缓冲层,将盘的边缘蚀刻 900 nm。剩余的 Ge 基座用作 p 接触区以及激光器的散热器(图 1 a、b)。在这个简单的结构中,由于 SiGeSn 的导热性较差,有源区的实际晶格温度比热浴 T b 高约 60K。但是,激光器在 T b =40K 以下以连续波 (CW) 模式工作,但也可以在 T b =77K 时以直接调制模式高效工作至 ns 脉冲。
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的
本文介绍了在 LiNbO 3 和 LiNbO 3 :Fe 衬底上采用水热法在低温下生长的 ZnO 纳米棒组成的半导体铁电结构的特性。通过扫描电子显微镜、光致发光和分光光度法分析了所得结构。给出了 SEM 图像和光谱、吸收光谱、紫外和可见光范围内的光致发光光谱。研究表明,可以与其他方法一起使用水热法合成 Zn(NO 3 ) 2 6H 2 O 和 C 6 H 12 N 4 来获得 ZnO 纳米棒阵列,作为基于表面活性剂的紫外线辐射传感器的敏感元件。关键词:纳米棒;光致发光;扫描电子显微镜;吸收光谱 PACS:68.37.Hk,78.55.Ap,42.25.Bs,61.46.Km
本期特刊主要关注 Ga 2 O 3 外延生长和电子器件相关主题的最新进展。实验和理论工作均可接受。我们邀请向本期特刊提交原创研究文章/通讯和综合评论论文。本期特刊将涵盖的主题包括但不限于: 高压 Ga 2 O 3 电子器件; Ga 2 O 3 射频器件; Ga 2 O 3 异质结器件; Ga 2 O 3 薄膜的高质量外延生长; Ga 2 O 3 在异质衬底上的异质集成; Ga 2 O 3 器件的理论建模与仿真; 大尺寸 Ga 2 O 3 单晶和晶片。
除了 GaAs 功率放大器技术外,氮化镓 (GaN) 微波功率放大器技术也在探索中,以满足未来 BMD 雷达的性能要求。这项工作将展示一种使用气相外延生长的 GaN 衬底作为宽带隙材料的微波功率放大器。高性能 X 波段功率放大器将为未来的雷达和导弹导引头提供高达三到四倍的电流能力。所选的晶体管设计具有高迁移率和高载流子浓度、高多功能性、高击穿电压和高增益、使用合金层适当设计通道组成以及对微管缺陷的低敏感性等优势。
摘要——我们通过实验证明了蓝宝石衬底上工作温度高达 400 ◦ C 的坚固的 β-氧化镓 (β-Ga 2 O 3) 铁电 (FE) 场效应晶体管 (FeFET)。原子层沉积 (ALD) Hf 0.5 Zr 0.5 O 2 [氧化铪锆 (HZO)] 用作 FE 电介质。研究了 HZO/β-Ga 2 O 3 FeFET 在高温下的突触行为应用。这些器件表现出可区分的极化切换操作,输出电导由 FE 门上的输入脉冲数准线性控制。在模拟中,使用带有简单的两层多层感知器 (MLP) 网络的修改后的国家标准与技术研究所 (MNIST) 数据集,片上学习准确率在高温下达到 94%。这些超宽带隙半
林肯实验室正在开发一种结合氮化镓 (GaN) 和硅互补金属氧化物半导体 (Si CMOS) 器件的技术,以便为先进的相控阵系统提供更高效的 HPA 和高度集成的发射器/接收器 (T/R) 模块。由于 GaN 的宽带隙,在 Si 衬底上生长的 GaN 器件可提供高输出功率、高效率和宽带宽。使用 CMOS 器件可以集成额外的高密度和节能的 T/R 硬件组件,例如移相器、模数转换器和数模转换器以及数字控制器。将这些组件集成在单个集成电路上可大大降低相控阵系统的成本,并实现电路技术,例如用于在宽带宽上提高功率放大器效率的技术,这些技术在其他情况下可能无法实现。
必须充分利用它们的物理特性并成功实现器件,例如各种成功的 III-V 半导体器件 40,41 ——最终目标是外延和单晶生长。Sb2Te3(以及其他拓扑绝缘体,如 Bi2Te3 和 Bi2Se3)的外延膜已通过分子束外延工艺直接生长,29,30 该技术在批量生产中显示出其局限性。另一方面,化学气相沉积技术存在形态控制不佳的问题,我们专门研究了 MOCVD 在这方面的研究。 TI 生长中常用的衬底,例如 Si(100)、Si(111) 和 Al 2 O 3 (0001),与 Sb 2 Te 3 (以及一般的 TI) 存在明显的晶格失配,因此在存在旋转畴的情况下,会生长为取向性较差的多晶层 23,32 – 34 ,只有少数例外 42,43
摘要。通过等离子体增强化学气相沉积 (PECVD) 方法沉积薄膜是制造 MEMS 或半导体器件的关键工艺。本文全面概述了 PECVD 工艺。在简要介绍 PECVD 反应器的主要层及其应用(例如氧化硅、TEOS、氮化硅、氮氧化硅、碳化硅、非晶硅、类金刚石碳)之后,介绍了这些层。分析了工艺参数(例如腔体压力、衬底温度、质量流速、RF 功率和 RF 功率模式)对沉积速率、膜厚度均匀性、折射率均匀性和膜应力的影响。微机电系统 (MEMS) 和半导体器件的薄膜 PECVD 沉积的主要挑战是优化沉积参数,以实现高沉积速率和低膜应力,这在低沉积温度下是可能的。