FD-SOI 技术(在欧洲发明、获得完整专利和开发,非常适合加强欧洲的工业实力)得到了众多欧盟合作项目框架(ENIAC、ECSEL、KDT、CHIPS)的支持,涉及许多学术和工业合作伙伴。这些项目为创建强大而全面的生态系统做出了巨大贡献。大部分 FD-SOI 价值链(晶圆制造、建模、芯片设计和工艺等)由欧洲掌握和托管。Soitec 是 FD-SOI 衬底晶圆制造领域的全球领导者,意法半导体 (ST) 和 GlobalFoundries (GF) 使用 Soitec 的晶圆在欧洲加工 28nm 和 22nm FD-SOI 集成电路。高通、谷歌、三星、索尼、博世、Nordic、NXP 等全球领先公司和
摘要 首次展示了通过剥离技术在 SiO 2 / Si 衬底上制备的纳米膜三栅极 β -氧化镓 ( β -Ga 2 O 3 ) 场效应晶体管 ( FET )。通过采用电子束光刻技术,可以定义最小尺寸特征,覆盖通道宽度为 50 纳米。为了在 β -Ga 2 O 3 和栅极电介质之间获得高质量的界面,利用原子层沉积的 15 纳米厚的氧化铝 ( Al 2 O 3 ) 和三甲基铝 ( TMA ) 自清洁表面处理。制备的器件表现出极低的亚阈值斜率 ( SS ),为 61 mV dec − 1 ,高的漏极电流 ( I DS ) 开/关比为 1.5 × 10 9 ,以及可忽略不计的传输特性滞后。我们还通过实验证明了这些器件的稳健性,在高达 400°C 的温度下测量了电流-电压(I-V)特性。
在本文中,我们研究了外延 Ge/Si 层中拉曼模式的应变 - 声子系数的温度依赖性。为此,我们首先从理论上描述 b ( T ) 如何与材料弹性常数和声子波数的温度依赖性相关联。随后,我们分析了双轴应变场与 T 的关系,明确证明 ε ( T ) 可以分解为两个独立的贡献:(a) 外延应变,由于 Si ─ Ge 晶格失配(在特定温度下)引起,(b) 热应变,由 Ge 外延层和相对较厚的 Si 衬底之间的热膨胀系数 (CTE) 差异引起。最后,我们使用这些结果直接提取 150 – 450 K 范围内 Ge/Si 样品中的 b ( T ),通过比较 T 相关的 μ -Raman 测量与 T 相关的高分辨率 X 射线衍射实验 (HR-XRD),
摘要 关于碳纳米管-硅 MIS 异质结构的新研究表明,可利用器件绝缘层中厚度的不均匀性来增强其功能。在这项工作中,我们报告了一种器件的制造和特性,该器件由 n 型硅衬底上的单壁碳纳米管 (SWCNT) 薄膜组成,其中纳米管和硅之间的氮化物中间层已被刻蚀以获得不同的厚度。三种不同的氮化硅厚度允许在同一器件内部形成三个区域,每个区域都有不同的光电流和响应度行为。我们表明,通过选择特定的偏置,可以打开和关闭区域的光响应。这种特殊行为使该器件可用作具有电压相关活性表面的光电探测器。在不同偏置下对器件表面进行的扫描光响应成像突显了这种行为。
本工作采用金属有机化学气相沉积(MOCVD)技术分别在GaN模板和蓝宝石衬底上沉积β-Ga 2 O 3 薄膜,制备相应的β-Ga 2 O 3 薄膜金属-半导体-金属(MSM)光电探测器(PD)。比较这两种异质外延β-Ga 2 O 3 薄膜PD的性能,发现氧空位是造成差异的原因。GaN上β-Ga 2 O 3 PD的响应度随叉指间距的增加而增大,而蓝宝石上β-Ga 2 O 3 PD的行为则相反。提出了MSM结构的光电导模型,表明氧空位在上述观察中起着关键作用。同时,氧空位对光生空穴的捕获不仅增强了响应度,而且延迟了响应时间。该工作为异质外延β-Ga2O3薄膜PD的进一步优化奠定了基础。
可拉伸电子器件对于下一代智能交互系统的开发具有重要意义。在此,我们提出了一种无顶栅电极的本征可拉伸有机摩擦电子晶体管 (SOTT),它由可拉伸衬底、银纳米线电极、半导体混合物和非极性弹性体电介质组成。SOTT 的漏源电流可以通过与电介质层的外部接触通电来调制。在与通道方向平行和垂直的 0-50% 拉伸下,SOTT 保持了出色的输出性能。在拉伸至 50% 数千次后,SOTT 仍能保持出色的稳定性。此外,SOTT 可以贴合地附着在人的手上,可用于人机交互中的触觉信号感知以及控制智能家居设备和机器人。这项工作实现了可拉伸摩擦电子晶体管作为智能交互的触觉传感器,扩展了摩擦电子在人机界面、可穿戴电子产品和机器人技术中的应用。
CMOS 技术的巨大成功以及由此带来的信息技术进步,无疑归功于 MOS 晶体管的微缩。三十多年来,MOS 晶体管的集成度和性能水平不断提高。随后,为了提供功能更强大的数字电子产品,MOSFET 的制造尺寸越来越小、密度越来越高、速度越来越快、成本越来越低。近年来,微缩速度不断加快,MOSFET 栅极长度已小于 40 纳米,器件已进入纳米世界(图 1)[1]-[2]。所谓的“体”MOSFET 是微电子技术的基本和历史性关键器件:在过去三十年中,其尺寸已缩小了约 10 3 倍。然而,体 MOSFET 的缩放最近遇到了重大限制,主要与栅极氧化物(SiO 2 )漏电流 [3]-[4]、寄生短沟道效应的大幅增加以及迁移率急剧下降有关 [5]-[6],这是由于高度掺杂的硅衬底正是为了减少这些短沟道效应而使用的。
为了实现大规模集成,在半导体衬底上制造的集成电路需要多层金属互连,以将半导体芯片上的半导体器件的离散层电连接起来。不同层级的互连由各种绝缘层或介电层隔开,这些绝缘层或介电层通过蚀刻孔将一层金属连接到下一层金属。随着特征尺寸的缩小和芯片上晶体管密度的进一步增加,后端铝互连的电阻和寄生电容已成为限制高性能集成电路 (IC) 电路速度的主要因素。1-2) 通过减小绝缘层的厚度,金属线之间的层内和层间电容会增加,因为电容与线之间的间距成反比。随着电容的增加,电阻-电容 (RC) 时间延迟会增加。增加 RC 时间延迟会降低电路的频率响应并增加信号通过电路的传播时间,从而对
半导体照明产业链中的衬底、外延片、光源、照明产品(发光二极管LED)及其制造设备、电子镇流器制造及贸易。产品能效应达到《室内照明用发光二极管产品能源效率限定值及等级》(GB 30255)、《道路、隧道照明用发光二极管灯具能源效率限定值及等级》(GB 37478)、《普通照明用发光二极管平板灯能源效率限定值及等级》(GB 38450)、《管型荧光灯用发光二极管平板灯能源效率限定值及等级》(GB 17896)、《高压钠灯镇流器能源效率限定值及节能评价值》(GB 19574)、《金卤灯镇流器能源效率限定值与等级》(GB 20053)、《单端无极荧光灯用交流电子镇流器能源效率限定值与等级》(GB 29143)等相关能效标准的一级要求。