实现了在轴上硅(001)面上直接生长的InGaAs/AlGaAs量子阱激光器的室温连续波工作。首先在金属有机化学气相沉积系统中在硅衬底上生长一层厚度为420 nm、完全没有反相畴的GaAs外延层,然后在分子束外延系统中依次生长其他外延层(包括四组五周期应变层超晶格和激光结构层)。激光器采用宽条法布里-珀罗激光器,条带宽度为21.5 μm,腔长为1 mm。典型阈值电流和相应的阈值电流密度分别为186.4 mA和867 A/cm 2 。激射波长约为980 nm,斜率效率为0.097 W/A,在注入电流为400 mA时单面输出功率为22.5 mW。这一进展使得与量子阱激光器相关的硅基单片光电集成更加有前景,可行性增强。
优异的性能和大规模制造的潜力为碳化硅衬底上外延石墨烯的电子应用开辟了广阔的领域。然而,在不使用静电栅极的情况下,可靠的掺杂方法可以永久控制载流子浓度并将其调整到所需值,这具有挑战性,并且仍在研究中。在本研究中,研究了一种后生长分子掺杂技术,该技术通过使用受体 F4-TCNQ 来补偿原始外延石墨烯的高电子密度。通过精确调节掺杂剂浓度,载流子密度可以在从本征 n 型到 p 型的宽范围内进行调整。制造的量子霍尔器件可以直接使用,无需进一步处理。不同掺杂水平的石墨烯基器件的高精度电阻测量显示量化精度为 10 − 9,这强调了所制造器件的高质量以及该方法对器件应用的适用性。实验观察到的载流子密度与量子霍尔平台开始之间的相关性为量子电阻计量中的器件选择提供了可靠的标准。
我们利用频率调制电荷泵方法快速方便地测量高度缩放的 Si/SiO 2 金属氧化物半导体场效应晶体管中的单个“每周期电荷”。这表明检测和操纵了位于 SiO 2 栅极电介质和 Si 衬底之间边界的单个界面陷阱自旋物种(几乎肯定是 P b 型中心)。在亚微米设备中的演示中,栅极氧化物的 Dennard 缩放产生了极大的栅极氧化物漏电流,消除了电荷泵电流和漏电现象之间的干扰。结果是能够可靠且轻松地测量单个陷阱电荷泵,否则由于氧化物泄漏而完全无法访问。这项工作为单自旋物种检测和操纵提供了一种独特且随时可用的途径,可用作电流的量化标准,也可作为开发量子工程技术的潜在有用平台。最后,我们讨论了产生看似矛盾的每周期电荷奇数和偶数整数值测量值的潜在潜在物理机制。
为了制备高击穿电压薄膜,对高击穿电压材料有许多要求,[5,12]例如,介电常数要尽可能大,介电材料在硅衬底上必须是热力学稳定的。[6,8,13]目前对击穿强度的研究工作都是在PECVD/LPCVD上进行的,[10,14]但本实验采用ICP-CVD模型制备氮化硅薄膜,可以提供更多的能量,促进反应气体的分解,制备出击穿强度更大的薄膜。氮化硅薄膜中的氢含量对薄膜的击穿强度影响很大。[15]在薄膜的成分中,Si-H键在薄膜的组成中起着基础性的作用,随着薄膜中氢含量的变化,薄膜的电学性质将发生变化。 [6,16,17]当薄膜中氢含量较高时,硅的悬挂键会被H填充,会增加薄膜的稳定性,提高击穿强度。[18]但关于H含量与薄膜击穿电压的关系,在ICP-CVD机上进行的实验很少,结论也不完善,因此本实验采用ICP-CVD机进行薄膜沉积。[19,20]
此外,当在这些先进节点中考虑单粒子瞬变 (SET) 时,对软错误的敏感性会变得更加糟糕。此类 SET 可能是由高能粒子(如宇宙中子)撞击半导体器件敏感区域引起的,这会影响电路性能。16,17 例如,当粒子撞击硅衬底时,它们会产生二次电子-空穴对,这些电子-空穴对可被周围的 pn 结收集,从而影响器件行为。18,19 发射的阿尔法粒子主要是由于芯片封装中的铀和钍杂质的放射性衰变。当阿尔法粒子穿过半导体器件时,电子会沿着阿尔法粒子的轨迹从晶格位置脱落。20,21 临界电荷是翻转逻辑所需的最小电荷。除了单粒子放电 (SET) 之外,撞击还可能导致单粒子翻转 (SEU),这两者都会妨碍电路的正常运行,并导致软错误。22-25 质子的直接电离可能会导致临界电荷 (Q crit) 较低的器件发生 SEU。26
研究了 Ti 3 SiC 2 基欧姆接触在 p 型 4H-SiC (0001) 4° 偏心衬底上的高温稳定性和可靠性。该接触由高温(900°C 至 1200°C)退火的 Ti 100-x Al x 合金生长而成。室温和高温(高达 600°C)下的特定接触电阻 (SCR) 在 10 -4 -10 -5 Ω.cm 2 范围内。计算出该组样品的肖特基势垒高度为 0.71 至 0.85 eV。在 600°C 下老化 1500 小时后,当 Al 含量 x < 80 at% 时,SCR 非常稳定。这与这些接触的化学和物理稳定性有关,其中老化后 4H-SiC/Ti 3 SiC 2 界面上的残余应力减小,因此 Ti 3 SiC 2 相得以保留。然而,在 x = 80 at% 的情况下,Ti 3 SiC 2 相消失,长时间老化后接触不再具有欧姆性。所得结果表明,Ti 3 SiC 2 /4H- SiC 系统在高温下具有热力学稳定性,因此可以成为高功率和高温电子应用的良好候选材料,具有很高的潜力。
摘要:单晶半导体衬底上的外延和薄膜形成工艺直接实现了各种复杂的 III-V 异质结器件设计,因此决定了最终的电子或光电器件性能。III-V 异质结不仅包括结上掺杂剂种类变化的概念,更重要的是,还包括半导体晶体的变化,从而区分了 III-V 器件设计选项以及与硅基器件相比的伴随性能优势。最早的商业化实例是 AlGaAs/GaAs 结,它利用能带隙差异来设计电荷载流子限制。GaAs 的带隙比 AlGaAs 窄,并且可以通过精确控制 Al 的成分来“调整”AlGaAs 的带隙。数十年的研究已经导致整个半导体光谱中 III-V 异质结化合物的开发;元素周期表的 III 列中的 B、Al、Ga 和 In,以及 V 列中的 N、P、As 和 Sb。该演讲将深入探讨 III-V 外延和薄膜沉积技术、关键工艺考虑因素、异质结挑战和局限性等主题,并提供对未来机遇的看法。
10:50–11:30:休息/电子海报会议 11:30 – 11:40:Andrea Tomadin(意大利比萨大学)O 光激发石墨烯的有效塞贝克系数理论 11:40 – 11:50:Adam Rycerz(波兰雅盖隆大学)O 掺杂石墨烯中的亚 Sharvin 电导和增强散粒噪声 11:50 – 12:00:Argyrios Varonides(美国斯克兰顿大学)O 通过正向偏置石墨烯/n-GaAs 肖特基结中的隧穿实现电子发射理论 12:00 – 12:30:Marcos A. Pimenta(巴西 UFMG 大学)K 旋转双层石墨烯中层内和层间电子-声子过程的共振拉曼增强 12:30 – 12:40:Artur Dobrowolski (Lukasiewicz 研究网络-微电子与光子学研究所,波兰) O 根据 SiC 衬底的拉曼响应确定石墨烯层数 12:40 – 12:50:Karolina Pietak(Lukasiewicz 研究网络-微电子与光子学研究所,波兰) O 通过介电层沉积增强石墨烯相关和衬底相关的拉曼模式 12:50 – 13:00:Jakub Jagiello(Lukasiewicz 研究网络-微电子与光子学研究所) : 13:00 – 13:10: Konrad Wilczynski (华沙理工大学,波兰) O 支撑单层和多层 WS2 纳米片中的声子非谐性 - 第一性原理和拉曼研究 13:10 – 13:20: Christoph Geers (NanoLockin GmbH,瑞士) O 用于分析石墨烯的主动热成像技术 13:20 – 14:20 : 午餐休息 14:20 – 14:50: Joshua A. Robinson (宾夕法尼亚州立大学,美国) K 探索原子极限的金属 14:50 – 15:00: Assael Cohen (特拉维夫大学,以色列) O 一种用于晶圆级高光学质量 TMD 的创新方法 原子通过 MOCVD 技术进行层生长 15:00 – 15:30: Joan M. Redwing (美国宾夕法尼亚州立大学) K 蓝宝石上的 TMD 阶梯定向外延
这大大加速了研究,也带来了新的挑战。在光电子领域,研究人员和行业正在努力提高 UV-C 发射器的效率,制造稳定可靠的短波长激光器,开发可见的微型 LED,并了解缺陷在限制器件性能和可靠性方面的作用。对于射频器件,主要挑战与器件缩放、损耗最小化、开发合适的背障以最大限度地减少短沟道效应以及可靠性优化有关。功率器件的研究受到 Si 和碳化硅竞争的推动,旨在通过缩放和使用 8 英寸硅衬底来最大限度地降低器件成本,将最大工作电压提高到 kV 以上,优化器件结构以确保在关断状态下、正栅极应力下和硬开关条件下的高可靠性。人们正在付出大量努力来开发可靠的垂直 GaN 器件,能够处理高功率/电流水平,和/或在 kV 范围内工作。 GaN基集成电路领域的最新改进进一步推动了紧凑、可靠的电源转换器的发展。
在 (001) Si 平台上外延生长 III-V 激光器正成为低成本、节能和晶圆级光子集成电路的终极集成策略。随着在 III-V/Si 兼容衬底上生长的激光二极管的性能向商业化发展,外延 III-V 激光器和 Si 基波导之间的光接口问题变得越来越紧迫。作为替代方案,选择性区域生长在 Si 上产生无缓冲 III-V 激光器,从而从本质上促进与 Si 光子学的有效光耦合。由于选择性生长的无位错 III-V 晶体的尺寸通常限制在亚波长尺度,因此主要挑战在于实现电驱动激光器,特别是如何在不引起大的光吸收损失的情况下对金属触点进行图案化。在本篇观点中,我们简要概述了在 (001) Si 平台上选择性生长的最先进的 III-V 族激光器,并讨论了这种集成方法的前景,重点介绍了实现电驱动设备的前景。我们重点介绍了选择性异质外延提供的独特优势以及实际应用面临的挑战和潜在解决方案。