高效热泵与储热装置的集成对于实现电热一体化系统高效与灵活运行的协同具有重要意义。本文提出了一种带有热泵与储热装置的电热一体化系统,引入热流法,考虑能量传递、转换和储存过程,构建了该系统的总动态功率流模型,并在此基础上推导了系统总体约束和部件约束方程。在最小化风电弃风限电目标下,分析了热泵动态特性、储热容量、新增风电装机、新增热负荷对电力和热力出力的综合影响。结果表明,考虑热泵动态特性可使风电出力调度准确率提高8%;热泵与储热装置的组合对储存和释放过程的杠杆系数分别为3.06和0.17,有效提高了系统调度的灵活性。新增风电装置与新增热负荷的协调性,以及热泵运行温度的提高,更有利于促进风电消纳,提高系统整体灵活性。研究结果为制定含热泵—热储的电热一体化系统综合调度方案提供了必要的依据。
讨论:坦诚的讨论让我们了解了公司在各种问题上的立场。对于提出的每一个问题,我们都得到了有数字支持的证据,以有力地捍卫公司的立场并反驳不可持续的做法。我们听说了公司范围内支持员工参与的各种举措,包括公司的“Dragonfly”软件工具,该工具记录员工安全相关的反馈,以转化为可衡量的行动——2023 年采取了超过 200,000 次观察。公司为切实改善工作条件所做的努力,已将记录的受伤率降低到远低于行业平均水平。我们还了解了公司为降低侵犯人权风险而参与和监控其庞大供应链的努力。我们了解到公司持续、实质性的脱碳目标,包括在 2023 年签订 28GW 的可再生能源合同,相当于整个英国装机容量的 50% 以上。最后,公司强调了最近任命斯坦福大学兼职教授 Andrew Ng 博士为董事会成员。他曾担任谷歌大脑负责人、百度首席科学家,目前是一家人工智能风险投资基金的管理合伙人。他的任命将有助于董事会从社会和商业角度了解人工智能带来的机遇和挑战。
图表列表 页码 图 1:全印度每月可再生能源产能增加 02 图 2:全印度每月太阳能产能增加 03 图 3:全印度每月风电产能增加 03 图 4:当月新增可再生能源产能 04 图 5:可再生能源装机容量的来源增加 04 图 6:截至 2024 年 6 月 30 日的印度装机容量 05 图 7:印度累计总发电量和可再生能源发电份额 05 图 8:2024 年 6 月印度总发电量和可再生能源发电份额 06 图 9:2024 年 6 月各地区可再生能源发电量 06 图 10:截至 2024 年 4 月至 2024 年 6 月各地区可再生能源累计发电量 07 图 11:2024 年 6 月可再生能源发电量来源细分 07 图 12:来源细分2024-25 年累计可再生能源发电量(截至 2024 年 6 月) 08 图 13:可再生能源发电量汇总 09 图 14:2024 年 6 月可再生能源发电量与 2023 年 6 月相比的新增量 09 图 15:2024-25 年可再生能源发电量逐月增长(与去年同期相比)
本研究调查了将风电场的间歇性发电与碱性电解槽结合起来生产绿色氢气的可行性。首先开发了一个物理上精确的商用电解模块模型,该模型考虑了由于模块冷却而导致的转换效率下降、由于风电间歇性导致的关机影响以及工作时间范围内的电压下降。该模型已经在真实模块上进行了校准,并提供了其工业数据。我们考虑了三种商用模块尺寸,即 1、2 和 4 MW。第二步,将该模型与来自真实风电场的历史功率数据集相结合,该风电场的标称装机功率为 13.8 MW。最后,在尺寸算法中实施该模型,以找到实际风电场功率输出和电解槽容量之间的最佳组合,以尽可能达到最低的氢气平准成本 (LCOH)。为此,我们根据工业数据和市场报告,考虑了整个系统(风电场和电解槽)的资本成本的实际数据,以及包括定期更换退化部件和定期维护在内的维护成本。模拟表明,如果对这两个系统进行正确的尺寸调整,即使使用现有技术也可以实现具有竞争力的氢气生产成本。较大的模块灵活性较差,但目前比较小的模块便宜得多。因此,未来需要碱性电解槽的规模经济来促进该技术的传播。
印度孟买 – 2024 年 7 月 22 日 – JSW Energy Limited(或“公司”)的全资子公司 JSW Neo Energy Limited(或“JSW Neo”)已收到卡纳塔克邦可再生能源发展有限公司(或“KREDL”)的授予函(或“LoA”),将在卡纳塔克邦 Pavagada 太阳能园区建立 300 兆瓦太阳能发电项目。获得该容量授予后,公司的总锁定容量增加到 15.5 吉瓦。公司预计到 2025 财年,装机发电容量将从目前的 7.5 吉瓦增加到 10 吉瓦。JSW Energy 的总锁定发电容量为 15.5 吉瓦,其中包括 7.5 吉瓦的运营容量、2.3 吉瓦的在建容量(包括风电、火电和水电)以及 5.7 吉瓦的可再生能源储备(签署的 PPA 为 2.0 吉瓦)。该公司还通过电池储能系统和抽水蓄能项目锁定了 3.7 GWh 的储能容量。该公司的目标是在 2030 年前实现 20 GW 的发电容量和 40 GWh 的储能容量。JSW Energy 制定了到 2050 年实现碳中和的宏伟目标。
伏消纳的主要手段,在电力网中合理配置能源储存 的位置和容量,可以改变负荷和风力发电的时空特 性,进而改变电网的传输性能,解决输电线路阻塞 和过负荷的问题。文献 [7] 考虑储能和可再生能源 之间的互补性,以综合成本最低为目标构建输储规 划模型;文献 [8] 引入了一种自适应最小 - 最大 - 最小 成本模型,以找到新线路和储能的鲁棒最佳扩建规 划;文献 [9] 则从储能带来的效益出发,将商业储能 的选址、定容问题和线路扩展规划集成起来,构建 输储规划模型;文献 [10] 针对输电线路和储能系统 的综合规划,提出了一种连续时间混合随机 / 鲁棒优 化方法;文献 [11] 针对输电工程的扩建落后于风力 装机容量的发展,提出了一种考虑低压侧直供潜力 的协调规划方法;文献 [12] 总结了能源互联网的基 本概念和特点,对其基本结构框架进行了详细分 析,通过高通滤波的控制策略来平抑新能源功率的 波动;文献 [13] 提出依据风电预测误差,利用储能的 快速调节能力,提出考虑预测误差的储能控制策 略,从而进行平抑风电功率波动;文献 [14] 研究了多 区域电力系统储能优化配置问题,采用迭代算法将 原问题进行分解为多个子系统储能配置问题;文献 [15] 综合考虑多种经济因素,为追求最低经济成本, 建立一种分阶段的输储规划模型。需要指出的是, 输电网络约束的引入增加了输储规划模型的求解 难度,并且现有的输储协同规划研究主要集中于储 能和线路的扩建,考虑风光互补的输储联合规划的 研究很少。 面对大规模风光并网的输电网规划问题,本文 首先综合考虑风光互补特性和储能的运行特性,进 行输电线路规划,使储能成本、年弃风弃光成本和 输电线路成本最小化,其次提出 3 个评价指标来评
1. 背景 孟加拉国政府(GoB)从上一届政府开始就将电力行业列为优先事项。孟加拉国政府已制定了发电、输电和配电的短期、中期和长期计划和项目。随着战略规划和有利政策及法律框架的颁布,目前,该国的装机发电能力已增至 25,730 兆瓦,包括自备能源和可再生能源。人均发电量增加到 608 千瓦时(2021-22 财年)。配电线也增加到 6,19,000 公里,消费者数量增加到 4360 万。整体系统损耗从 2008-09 财年的 18.43% 降至 2021-22 财年的 10.41%。孟加拉国政府通过电力部门实现了 100% 电气化。根据可持续发展目标议程,孟加拉国政府致力于为所有人提供可靠、优质和负担得起的电力。可靠的电网和配电系统是一项挑战。在这方面,将电池储能系统 (BESS) 纳入电网和配电系统可能成为高效输配电系统、能源转型、服务可靠性、高效 VRE 集成、电网支持和碳减排的关键技术。孟加拉国电力部门打算在整个孟加拉国电网和配电网中使用储能技术。此外,它们还可以为能源系统的供应、输配电和需求部分提供基础设施支持服务。从广义上讲,BESS 可以作为运营商在供应和/或需求侧变化的系统中实现高质量和可靠电力流的宝贵工具。这将减少人们对孟加拉国向可变可再生能源渗透增加过渡的担忧。
印度已承诺将其单位 GDP 的城际碳排放量减少 33% 至 35%,以 2005 年的水平为基础,到 2030 年,其 40% 的装机容量来自非化石燃料。印度正在迅速发展,目前可再生能源装机容量居世界第四位,太阳能装机容量居世界第五位,风能装机容量居世界第四位。印度正迅速成为世界上最大的绿色能源生产国之一。印度对清洁能源和应对气候变化的承诺体现在其雄心勃勃的目标中,即到 2022 年安装 175 千兆瓦的可再生能源容量,到 2030 年从目前的 70 千兆瓦增加到 450 千兆瓦。在过去的七年里,印度是所有大型经济体中可再生能源容量增长最快的国家之一,可再生能源容量增长了三倍,太阳能增长了十七倍多。非化石燃料能源目前占该国装机容量的 39.6%。根据芬兰科技大学的研究,到 2050 年,我国有巨大潜力进入完全可再生电力系统。由于可再生能源部署目标巨大,行业和其他利益相关者组织需要拥有不同技术知识和技能组合的跨学科人才,例如拥有核心工程学科学士学位和可再生能源领域专业硕士学位的专业人士。能源与环境中心旨在提供必要的人才,为全球范围内可再生能源技术和一般能源的有针对性的开发和部署的所有方面做出贡献
电话:+917807639196,电子邮件:priyankakatwal486@gmail.com 摘要 本研究考察了印度喜马偕尔邦目前和未来的可再生能源状况。它探讨了该地区可利用的几种可再生能源,包括风能、太阳能、生物能源、小型和大型水力发电以及生物燃料。通过对装机容量、招标项目、目前正在执行的项目和总体安装管道的调查,该分析提供了对印度截至 2022 年的可再生能源能力的重要理解。该研究强调了精心规划的投资、政府框架和战术准备在最大限度地利用喜马偕尔邦可再生能源资源方面的关键作用。印度制定了可再生能源的宏伟目标,包括到 2070 年实现净零能耗,到 2030 年实现非化石燃料能源占比达到 50%,喜马偕尔邦非常适合成为印度逐步转向可再生能源的主要力量。我们使用来自不同政府网站、年度报告和文章的二手数据。这项研究还强调了可再生能源的部署和环境可持续性是如何相互关联的。喜马偕尔邦可以通过使用生物能源、小水电、太阳能和风能等资源来增加国家能源的稳定性和自主性,同时适当满足其自身的能源需求。关键词:可再生能源、风能、生物能源、太阳能、水力发电、净零能耗、可持续发展、能源转型。
氢是地球上数量最多、最简单的元素。它可以储存和释放可用能量。然而,氢并不单独存在于自然界中,必须由包含它的不同元素制成。例如,它可以与碳(如石油、天然气)和水中的氧(H 2 O)结合[1]。氢的每千克比能量是所有燃料中最高的(即 120-140 MJ/kg),但其能量密度不太适合储存(即 2.8-10 MJ/L),具体取决于物理储存方式(如压缩(350-700 bar)、液体)[2]。一方面,全球利用重整工艺从天然气、煤炭和石油中生产的氢气约占 96%。另一方面,利用水电解工艺将去离子水分解为氢气和氧气约占全球氢气产量的 4% [3]。尽管氢气本质上是一种清洁的能源,但它需要能量来生产;所采用的能源类型有所不同。由化石燃料生产的氢气由于间接污染而被称为灰氢。为了供应水电解过程,可再生能源 (RES)(例如风力涡轮机、光伏)是最适合的,因为它们可以限制对环境的影响。通过这种方式,可以获得所谓的绿色氢气。将这种氢气混合到现有的天然气管道网络中已被提议作为增加可再生能源系统产量的一种手段。通过管道输送氢气和甲烷混合物也有悠久的历史;最近,风电装机容量的快速增长以及对燃料电池电动汽车近期市场准备的关注,增加了利益相关者的兴趣 [ 4 , 5 ]。