垂直起降(VTOL)是无人机(UAV)的基本功能。VTOL一方面可以拓展和增强无人机的应用领域,但另一方面也使得无人机控制系统的设计更加复杂。控制系统设计中最具挑战性的需求是实现固定翼无人机对控制指令满意的响应敏锐度以及确保飞机模态通道有效解耦。本文在气动分析的基础上,建立了含有力和力矩的六自由度(6-DoF)模型,并通过计算流体力学(CFD)数值模拟进行气动分析。提出一种基于扩张状态观测器(ESO)的改进比例微分(PD)控制器来设计内环姿态控制,增强了无人机系统对内外部不确定性的抗干扰能力。建立无人机运动方程,将运动方程分解为纵向和横侧两个独立运动分量,设计小扰动条件下的外环控制律;提出一种纵向高度通道总能量控制系统(TECS),将速度控制与航迹控制分离;横侧轨迹跟踪采用L1非线性路径跟踪制导算法,提高曲线跟踪能力和抗风能力。实飞实验数据证明了该方法的有效性。最后,设计了一种控制律。
Helmholtz协会RI的高级工作组已开发出这一贡献,作为即将到来的欧盟研究与创新2028-2034的欧盟框架计划的投入。Helmholtz对欧洲在研究方面的合作的承诺是由世界领先的大规模研究基础设施(RI)的运营所支持的。这些设施的范围从X射线,中子和离子源到超级计算机,现场观测器,研究船,飞机和卫星。此外,Helmholtz参与了几个欧洲分布式研究基础设施。我们的RI免费向国家和国际学术用户免费开放。访问是基于卓越的,通过同行评审的建议确定。此外,我们的RI构成了培训下一代研究人员,工程师和数据管家的中心枢纽。为了跟上科学的进步,我们的中心定期评估建造新RI的需求。可以在https://go.fzj.de/dj2mc上访问RI的最新Helmholtz路线图。在Helmholtz,我们认为RI的特定计划部分具有FP10内足够稳定的资金(具有计划委员会的专用配置),以及欧洲需要有效的协调。这是应对美国和亚洲日益增长的竞争,吸引国际人才到欧洲的前提,以加强植根于在技术最前沿使用RI的有效研究合作,并在所有研究领域充分利用RI的创新潜力。FP10中的专用RI程序:
机器人设计,自主权和传感器集成的最新进展为探索深海环境创造了解决方案,可将其转移到冰卫月的海洋中。海洋平台尚未具有太空的任务自治能力(例如,火星坚持不懈的漫游者任务),尽管不同水平的自主导航和映射以及采样级别是一种可观的能力。在这种设置中,他们越来越生物添加的设计可以允许使用复杂的环境情景,并具有新颖的,高度集成的生命检测,海洋学和地球化学传感器套件。在这里,我们通过与三个主要研究领域的太空技术协同作用来实现即将在深海机器人技术中的进步:仿生结构和推进(包括电源和生成),人工智能和合作网络以及生命检测仪器设计。带有微型和更多弥漫性传感器套件的新形态和材料设计将推进机器人传感系统。控制导航和通信的人工智能算法将通过合作网络进一步开发行为生物塑料。解决方案将必须在有线观测器,中微子望远镜的基础设施网络中进行测试,以及具有议程和模式超出我们工作范围的议程和模式的离岸行业网站,但可以在固定和移动平台的操作组合中汲取灵感。
摘要:在世界范围内实现碳中和的宏伟目标下,可再生能源蓬勃发展。然而,由于其固有的不确定性和间歇性,可控系统的运行灵活性对于容纳可再生能源至关重要。现有的研究主要侧重于提高常规电厂的灵活性,而较少关注聚光太阳能发电与热能存储 (CSP-TES) 系统的灵活运行。为此,本工作的最终目标是研究CSP-TES 系统在电网系统调节中灵活运行的潜力和实现方式。在此目标下,分析了带有熔盐基TES 的50 MW槽式集热器CSP电站的动态特性,并总结了其主要的控制特性以证明该理想状态的可能性。之后,提出了一种协调控制策略。具体而言,分别为太阳能场和储能子系统设计了基于扰动观测器的前馈反馈控制方案和前馈反馈控制器,而功率块子系统则由两输入两输出的解耦控制器进行调节。基于分散结构,分别进行了三个仿真案例,以测试CSP-TES系统对大范围负荷变化跟踪、强扰动抑制或两者的能力。结果表明,即使在辐照剧烈波动的情况下,CSP-TES系统也能基于所提出的协调控制策略充分跟踪电网指令,证明了CSP-TES参与电网调节的灵活性。在可再生能源不断渗透到电网系统的背景下,研究CSP-TES系统从自身优化到电网调节器的角色转变具有重要意义。
未来,NASA 科学任务理事会行星科学部希望使用性能更好、成本更低的推进系统将探测车、探测器和观测器送往火星、木星和土星等地。为此,NASA 位于格伦研究中心的太空推进技术 (ISPT) 项目开发了一种名为先进材料双推进剂火箭 (AMBR) 的新型推进技术。作为一种先进的化学推进系统,AMBR 使用四氧化二氮氧化剂和肼燃料来推动航天器。根据目前的研究和开发努力,该技术有望提高发动机运行速度和使用寿命,并降低制造成本。在开发 AMBR 时,ISPT 有几个目标:缩短航天器到达目的地所需的时间、降低制造推进系统的成本以及减轻推进系统的重量。如果实现这些目标,它将提高太空科学调查的能力。例如,如果航天器所需的推进剂数量(和重量)减少,则可以在航天器上添加更多科学仪器(和重量)。为了实现 AMBR 的最大潜在性能,发动机需要能够在极高的温度和压力下运行。为此,ISPT 需要由铱涂层铼(坚固的高温金属元素)制成的发动机室,允许在接近 4,000 °F 的温度下运行。此外,ISPT 需要一种先进的制造技术,以便更好地涂层方法,从而提高发动机室的强度,而不会增加制造发动机室的成本。
摘要:双级独立光伏 (PV) 系统存在稳定性和可靠性问题,其提供最大功率的效率受环境条件变化的极大影响。混合反步控制 (BSC) 是最大功率点跟踪 (MPPT) 的良好候选方案,但是,由于 BSC 的递归性质,PV 输出中存在显著的稳态振荡。该问题可以通过提出一种混合积分反步控制 (IBSC) 算法来解决,其中提出的积分作用可显著降低 PV 阵列输出在不同温度和太阳辐照度水平下的稳态振荡。同时,在交流阶段,主要挑战是减少由负载参数变化引起的 VSI 输出的稳态跟踪误差和总谐波失真 (THD)。尽管传统的滑模控制 (SMC) 对参数变化具有鲁棒性,但它本质上是不连续的并且继承了过于保守的增益设计。为了解决这个问题,提出了一种基于超扭转控制 (STC) 的动态扰动抑制策略,其中设计了一个高阶滑模观测器来估计负载扰动的影响作为集中参数,然后由新设计的控制律拒绝该参数以实现所需的 VSI 跟踪性能。所提出的控制策略已通过 MATLAB Simulink 验证,其中系统在 0.005 秒内达到稳定状态,并在峰值太阳辐射水平下提供 99.85% 的 DC-DC 转换效率。交流级稳态误差最小化为 0 V,而 THD 分别限制为线性和非线性负载的 0.07% 和 0.11%。
电子、电信和信息技术学院,电信系 作品清单 Stanciu Mihai 1 0 博士论文 T1,M. Stanciu,关于确保异构多域网络中服务质量的方法的贡献,2006 2 0 出版书籍(Ca、Cb、Cc)、发布指南(I1、I2 等)、在合集里发表的章节、编辑过的理论章节、功能实验室系统等。 (D1、D2 等),为提供和改进教学/专业活动做出贡献。 Ca1、M. Stanciu、电子测量仪器、ISBN 978-973-7860-15-6,Editura Electronica 2000,136 页,2009 Ca2、R. Stănculescu、M. Stanciu、电气和电子测量,第 1 部分,UPB 光刻,120 页,1998 I1、M. Stanciu、S. Obreja、A. Paun、电子和电信测量、实验室手册、Editura Electronica 2000、ISBN 978-973-7860-09-5、80 页,2008 I2、M. Stanciu、S. Obreja、A. Paun、M. Udrea、I. Marcu、R. Preda、I. Pirnog、电子测量仪器、实验室手册、Editura Electronica 2000 年,ISBN 978-973-7860-10-1,97 页,2008 I3,- A. Paun、S. Obreja、M. Stanciu,电子测量仪器 – 应用,Electronica Publishing House 2000 年,ISBN 978-973-7860-13-2,130 页,2008 I4,M. Stanciu,电信网络 – 实验室手册,Electronica Publishing House 2000,79 页,2008 I5,Coţanis N.、Stănculescu R.、Ciochina S.、Iliescu I.、Lascu C.、Stanciu M.,电气和电子测量(实验室手册),布加勒斯特理工大学,1997 3 0 发表的文章/研究:a) 在公认的国际专业期刊、ISI 列出的或被收录到该领域特定的国际数据库中,该数据库根据绩效标准 (Ris) 进行期刊的选择过程; b) 在其他具有国际发行量的专业期刊上(里约); c) 在CNCSIS认可的国家期刊上(Rns); d) 在其他全国发行的专业杂志上(Rno); b、c、d 包括在公认的国际数据库中索引。 O. Datcu、M. Stanciu,“混沌“Jounce”密码系统的可观测性特性和统计分析”,UPB Sci。 Bull.,C 系列,卷78,页106-117,页3,2016,ISSN 2286-3540,WOS:000393326700010(ISI)O. Datcu,M. Stanciu,“从高阶滑模观测器观察到的混沌同步信号形状改变”,Rev.技术。英语。大学苏利亚。体积39,第1号,18-25,0254-0770,2016 O. Datcu、M. Stanciu、A. Petrescu-Niță,“基于观察者的具有指数非线性混沌动力学估计”,UPB Sci。 Bull.,A 系列,卷77,伊斯4,2015,ISSN 1223-7027,页205-214。 ( ISI 索引) O. Datcu、M. Stanciu、R. Tauleigne、C. Burileanu、J.-P. Barbot,“数据保密通信中用作发射机的混沌抖动电路的输出选择”,电气和计算机工程进展 (AECE);第 4 期,2015 年,ISSN:1582-7445,e-ISSN:1844-7600,数字对象标识符:10.4316/AECE.2015.04008;第 63-68 页。ISI O. Datcu、M. Stanciu,“从高阶滑模观测器看混沌同步信号形状改变”,Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia,第 39 卷,第 1 期,2016 年;第 18-25 页,ISI
其中 C i 是时间上的第 i 次电容测量,C 0 是初始值。有许多研究已经研究了电池老化过程中的退化(Zhang,2011)。随着电池老化,电池性能下降与电池化学成分的变化有关。首先,固体电解质界面 (SEI) 层的生长会降低电池的电气效率。这会导致电池高频电阻增加,从而降低电池的最大功率输出(Troltzsch,2006)。电池电量的大量损失将导致车辆运行无效或车辆故障,即车辆无法运行。其次,电池容量会随着电池老化而下降(Liaw,2005)。容量下降是由多种因素造成的,例如活性材料中键合位点的损失和活性锂离子的损失。电池容量的大量损失将导致电池运行无效和车辆行驶里程减少。已经多次尝试使用电池阻抗或电池容量来估计电池 SOH。 Haifeng 等人 (2009) 将 SOH 定义为电池高频电阻的函数。作者使用卡尔曼滤波器估算电池电阻以估算电池 SOH。此外,Kim (2010) 开发了一种估算电池容量的技术以估算 SOH。作者实施了双滑模观测器来估算电池容量衰减。尽管在 SOH 估算领域取得了很大进展,但仍不确定,仍需要研究以开发新的更准确的方法。本文提出的研究调查了基于电池储能能力估算电池 SOH 的新方法。安培小时吞吐量 (Ah) 是电池的当前吞吐量,表示电池输送或储存的能量。电池端电压和开路电压随电池充电状态而变化。安培小时吞吐量可以是
极光现象本质上是动态的:观测到的事件具有丰富的结构,在空间和时间上都很复杂,具有科学上有趣的特征。虽然使用 CCD 或全天相机进行光学极光观测很常见,但极光在无线电频率 (RF) 下也具有有趣的发射特性,特别是在低频和高频波段。极光发射无线电观测器 (AERO) 是一颗 6U 立方体卫星,配备了新型电磁矢量传感器 (VS) 天线。VS 将瞄准 100 kHz - 15 MHz 测量波段内的极光发射,这使得人们能够研究有趣的发射类型,例如极光千米辐射 (20 kHz -750 kHz)、中频爆发 (1.6 MHz - 4.4 MHz) 和回旋加速器发射 (2.8 MHz - 3.0 MHz)。 VS 天线从立方体卫星框架展开后,两端之间的距离为 4 米,并展开形成电偶极子和磁环天线,这些天线的灵敏度足以探测这组不同的科学目标。拥有太空平台(例如 AERO 的矢量传感器天线)可将探测器定位在电离层等离子体频率之上,否则会限制对无线电发射的观测。AERO VS 天线的新测量需要一组背景数据来验证所得数据产品的保真度。AERO 包括一个称为辅助传感器包 (ASP) 的辅助有效载荷,它将使用背景光学和磁数据增强 VS 测量。AERO 背景光学测量的目标是检测多个光谱带中极光发射的存在,即 557 nm 的绿线发射和 630 nm 的红线发射。选择 AMS AG AS7262 6 通道可见光波段光谱光度计作为光学传感器。我们提出了一个辐射测量模型,用于评估 AS7262 传感器测量目标极光事件的能力。我们考虑了许多不同的测试场景,包括不同的参数,例如以瑞利为单位的极光源辐射度、航天器