神经工程的最新进展表明,通过长期植入的微电极阵列从受试者的前额叶皮层(PFC)收集的局部田间电位(LFP)信号是用于设计鲁棒和弹性大脑 - 计算机接口(BCIS)[1-4]的峰值计数记录的可靠替代方法。非参数回归的理论已证明对基于LFP的解码器的成功至关重要。如[4,5]所述,非参数回归在LFPS中的应用导致基于著名的Pinsker定理的基于复杂的基于频谱的特征提取技术的发展。与流行的特征提取方法相反,例如基于常规的功率谱密度(PSD)的解码器[6]或基于试验的空间协方差矩阵[7,8]的解码器,仅考虑了LFP信号振幅中存储的信息,Pinsker的特征
脑机接口 (BMI) 旨在通过将神经信号“解码”为行为来恢复脊髓损伤患者的功能。最近,非线性 BMI 解码器的表现优于之前最先进的线性解码器,但很少有研究调查这些非线性方法提供了哪些具体改进。在本研究中,我们比较了时间卷积前馈神经网络 (tcFNN) 和线性方法在开环和闭环设置中如何预测个体手指运动。我们表明,非线性解码器可以生成更自然的运动,产生的速度分布比线性解码器更接近真正的手部控制 85.3%。针对神经网络可能得出不一致解决方案的担忧,我们发现正则化技术将 tcFNN 收敛的一致性提高了 194.6%,同时提高了平均性能和训练速度。最后,我们表明 28 tcFNN 可以利用来自多个任务变体的训练数据来提高泛化能力。这项研究的结果表明,非线性方法可以产生更自然的运动,并显示出在约束较少的任务上进行泛化的潜力。31
对神经反馈培训研究和相关临床应用的一个重大挑战是参与者在训练过程中学习诱导特定大脑模式的困难。在这里,我们在基于fMRI的解码神经反馈(DECNEF)的背景下解决了这个问题。可以说,用于构建解码器的数据与用于神经反馈训练的数据之间的差异,例如数据分布和实验环境的差异,可能是上述参与者困难的原因。我们使用标准机器学习算法开发了一个共同适应程序。首先,我们使用以前的Decnef数据集通过模拟测试了该过程。该过程涉及一种自适应解码器算法,该算法根据其在神经反馈试验中的预测中实时更新。结果表明,在神经反馈训练期间,解码器性能有了显着改善,从而增强了学习曲线。然后,我们在Decnef培训程序中收集了实时fMRI数据,以提供概念证据证据,表明共同适应增强了参与者在训练过程中诱导目标状态的能力。因此,通过共同适应的个性化解码器可以提高Decnef培训方案的精度和可靠性,以针对特定的大脑表示,并在转化研究中产生后果。这些工具可公开提供给科学界。
使用脑电图(EEG)(EEG)的大脑计算机接口(BCI)为用户提供了一种非侵入性方法,即可与外部设备进行交互而无需肌肉激活。虽然非侵入性BCI有可能提高健康和运动障碍者的生活质量,但由于性能不一致和自由度低,目前它们的应用有限。在这项研究中,我们使用基于深度学习的解码器进行在线连续追踪(CP),这是一项复杂的BCI任务,要求用户在二维空间中跟踪对象。我们开发了一个标签系统,用于使用CP数据进行监督学习,基于两个架构的基于DL训练的解码器,包括对PointNet架构的新提出的改编,并评估了几个在线会话的性能。我们在总共28名人类参与者中严格评估了基于DL的解码器,发现基于DL的模型在整个会话中都改善了,随着越来越多的培训数据获得,并且在上一堂课之前大大优于传统的BCI解码器。我们还进行了其他实验,以测试通过培训模型对来自其他受试者的数据和中期培训的转移学习的实施,以减少会议间的可变性。这些实验的结果表明,预训练并不能显着提高性能,但是更新模型中期可能会带来一些好处。总体而言,这些发现支持使用基于DL的解码器来改善CP等复杂任务中的BCI绩效,从而可以扩大BCI设备的潜在应用,并有助于提高健康和运动障碍者的生活质量。
质谱法在阐明未知分子的结构和随后的科学发现中起着基本作用。结构阐明任务的一种结构是给定质量谱的分子结构的有条件生成。朝着针对小分子的更有效和有效的科学发现管道,我们提出Diffms,这是一个由公式限制的编码码头生成网络,可在此任务上实现最先进的性能。编码器利用变压器档位,并模型质谱域知识,例如峰值公式和中性损耗,而解码器是一个离散的图形扩散模型,该模型受已知化学公式的重原子组成限制。为了开发一个桥梁解码器,它可以弥合潜在的嵌入和分子结构,我们用指纹结构对预处理扩散解码器,这些解码器几乎以无限的量为单位,与结构 - 光谱对相对,以数千的数量为单位。在已建立的基准上进行的广泛实验表明,DIFFMS在从头分子上构成现有模型。我们提供了几种消融,以揭示我们扩散和预训练方法的有效性,并随着预训练的数据集尺寸的增加而显示出一致的穿孔缩放。DIFFMS代码可在https://github.com/coleygroup/diffms上公开获得。
摘要 — 我们在此介绍了用于训练 EEG BCI 解码器的元学习理念。元学习是一种训练机器学习系统使其学会学习的方法。我们将元学习应用于简单的深度学习 BCI 架构,并将其与同一架构上的迁移学习进行比较。我们的元学习策略通过寻找 BCI 解码器的最佳参数来运行,以便它可以在不同用户和记录会话之间快速推广 - 从而也可以快速推广到新用户或新会话。我们在 Physionet EEG 运动意象数据集上测试了我们的算法。我们的方法将运动意象分类准确率提高了 60% 到 80%,在小数据条件下优于其他算法。我们相信,建立元学习或学习学习方法将有助于神经工程和人机交互应对快速设置神经信号解码器的挑战,使其更适合日常生活。
抽象的用户机器接口映射从用户测量的生物信号,以控制外部设备的控制命令。从生物信号到设备输入的映射由解码算法执行。对用户和解码器的改编(共同适应)提供了提高不同用户和应用程序接口的包容性和可用性的机会。用户学习会导致可靠的接口控制,可以跨环境和上下文概括。解码器适应性可以个性化接口,说明日常信号变异性并提高整体性能。共同适应创造了塑造用户和解码器系统以实现可靠且可推广的个性化接口的机会。但是,共同适应创建了一个两学习系统,并在用户和解码器之间进行动态交互。工程共同自适应接口需要新的工具和框架来分析和设计用户 - 码头交互。在本文中,我们回顾了自适应解码,用户学习和在用户机器接口中的共同适应,可用于运动控制的用户机器接口,脑中脑部脑部计算机,肌电和运动接口。然后,我们讨论了自适应接口的性能标准,并提出了一种设计用户decoder共同适应的游戏理论方法。
同时记录的数十个神经元的活动可用于控制机械臂或计算机屏幕上光标的运动。这种运动神经假体技术激发了人们对推断运动意图的算法的兴趣。这些算法中最简单的是群体向量算法 (PVA),其中每个细胞的活动用于加权指向该神经元首选方向的向量。离线时,可以证明更复杂的算法(例如最佳线性估计器 (OLE))可以大大提高重建手部运动的准确性,优于 PVA。我们称之为开环性能。相反,这种性能差异可能不存在于闭环在线控制中。开环和闭环控制之间的明显差异是适应当时使用的解码器的具体情况的能力。为了预测算法在闭环控制中可能产生的性能提升,有必要建立一个模型来捕捉这种适应过程的各个方面。这里我们提出了一个用于对 PVA 和 OLE 的闭环性能进行建模的框架。通过模拟和实验,我们表明 (1) 某些解码器的性能增益可能远低于离线结果的预测,(2) 受试者能够补偿解码器中某些类型的偏差,以及 (3) 必须小心确保估计误差不会降低理论上最佳解码器的性能。© 2009 Elsevier Ltd. 保留所有权利。
对于某些问题,量子计算有望比传统计算具有显著的计算优势。然而,量子硬件的错误率比传统硬件高得多。因此,需要进行广泛的量子纠错才能执行有用的量子算法。解码器是纠错方案的关键组件,其作用是比错误在量子计算机中积累的速度更快地识别错误,并且必须使用最少的硬件资源来实现,才能扩展到实际应用的范围内。在这项工作中,我们考虑了表面码纠错,这是量子计算中最流行的纠错码系列,我们为 Union-Find 解码算法设计了一个解码器微架构。我们提出了一种三阶段全流水线硬件实现的解码器,可显著加快解码器的速度。然后,我们优化了同时对量子计算机的所有逻辑量子位执行纠错所需的解码硬件数量。通过在逻辑量子位之间共享资源,我们将硬件单元数量减少了 67%,内存容量减少了 70%。此外,我们使用低开销压缩算法将解码过程所需的带宽减少了至少 30 倍。最后,我们提供了数值证据,证明我们优化的微架构可以快速执行,足以纠正量子计算机中的错误。
多形性胶质母细胞瘤是一种侵袭性脑肿瘤,由于其侵袭性生长动力学,其存活率是所有人类癌症中最低的。这些动力学导致复发性肿瘤袋隐藏在医学影像之外,而标准的放射治疗和手术边缘无法覆盖这些肿瘤袋。通过偏微分方程 (PDE) 对肿瘤生长进行数学建模是众所周知的;然而,由于运行时间长、患者间解剖差异大以及忽略患者当前肿瘤的初始条件,它仍未在临床实践中采用。本研究提出了一种多形性胶质母细胞瘤肿瘤演化模型 GlioMod,旨在学习肿瘤浓度和大脑几何形状的时空特征,以制定个性化治疗计划。使用基于 PDE 的建模,从真实患者解剖结构生成 6,000 个合成肿瘤的数据集。我们的模型采用图像到图像回归,使用一种新颖的编码器-解码器架构来预测未来状态下的肿瘤浓度。 GlioMod 的测试是模拟肿瘤生长和重建患者解剖结构,在 900 对未见脑几何结构上与 PDE 求解的未来肿瘤浓度相对应。我们证明,通过神经建模实现的时空背景可以产生针对患者个性化的肿瘤演化预测,并且仍然可以推广到未见解剖结构。其性能在三个方面衡量:(1) 回归误差率、(2) 定量和定性组织一致性,以及 (3) 与最先进的数值求解器相比的运行时间。结果表明,GlioMod 可以高精度地预测肿瘤生长,速度提高了 2 个数量级,因此适合临床使用。GlioMod 是一个开源软件包,其中包括我们研究中从患者生成的合成肿瘤数据。