使用脑电图(EEG)(EEG)的大脑计算机接口(BCI)为用户提供了一种非侵入性方法,即可与外部设备进行交互而无需肌肉激活。虽然非侵入性BCI有可能提高健康和运动障碍者的生活质量,但由于性能不一致和自由度低,目前它们的应用有限。在这项研究中,我们使用基于深度学习的解码器进行在线连续追踪(CP),这是一项复杂的BCI任务,要求用户在二维空间中跟踪对象。我们开发了一个标签系统,用于使用CP数据进行监督学习,基于两个架构的基于DL训练的解码器,包括对PointNet架构的新提出的改编,并评估了几个在线会话的性能。我们在总共28名人类参与者中严格评估了基于DL的解码器,发现基于DL的模型在整个会话中都改善了,随着越来越多的培训数据获得,并且在上一堂课之前大大优于传统的BCI解码器。我们还进行了其他实验,以测试通过培训模型对来自其他受试者的数据和中期培训的转移学习的实施,以减少会议间的可变性。这些实验的结果表明,预训练并不能显着提高性能,但是更新模型中期可能会带来一些好处。总体而言,这些发现支持使用基于DL的解码器来改善CP等复杂任务中的BCI绩效,从而可以扩大BCI设备的潜在应用,并有助于提高健康和运动障碍者的生活质量。
主要关键词