为了立即发布房屋的碳足迹,二氧化碳的碳足迹在每欧元(约0.80便士)投资于可持续建筑材料上的同等含量超过1公斤,从而从可持续的建筑材料投资了,发现了Libre de Bruxelles(ulb(https:/https://wwwwwwwwwwwwwww.ulb.be/en)和corvinesuniversitélibrede Bruxelles和Corvines UniversityUniversitélibrede Bruxelles。 (https://www.uni-corvinus.hu/?lang=en)。最大的影响来自对可持续窗户和外墙的投资。布鲁诺·范·波特尔斯伯格(Bruno van Pottelsberghe),布达佩斯大学校长和索尔维·布鲁塞尔(Solvay Brussels Brussels)经济学和ULB管理学院的Joran Douhard,比较了ULB的经济学和管理学院,比较了标准房屋(分离和半开)与使用更多环保材料建造的可持续性版本。根据降低二氧化碳等效碳(COEQ)的排放,建筑材料的有效性是计算出来的。这标准化了排放的影响,例如甲烷具有CO SO SO SO SO SO SO SO SO甲烷等于28kg Coeq的28倍。研究人员发现,大多数COEQ排放量来自使用房屋(操作阶段),而不是建造或维护,其中房屋总碳足迹的65%归因于其一生中使用的能量。当考虑所有成本(建筑,运营,维护)时,“更可持续”房屋的总拥有成本比标准房屋高7-11%。由于更频繁地更换可持续材料,因此可持续房屋中的维护成本也为20%(分离)和13%(半独立式)。由于方法和数据可用,有兴趣的读者将能够轻松地使我们的结果适应当地特异性。”“建筑部门的影响是国家依赖性的,因此应谨慎进行国际比较(例如,运营影响高度依赖于加热系统,在地区之间有很大不同)。尽管如此,与混凝土结构相比,某些观察结果可以很容易地将其推广到更广泛的EU环境,例如木材框架的总体影响较低或体现和操作碳撞击之间的不平衡。该研究还表明,房屋的某些组成部分对碳足迹的影响更大。例如,用于外墙和窗户的可持续材料具有最大的影响,将排放量分别减少6公斤和每欧元3-6千克。由于住宅部门占全球所有碳排放量的17%,因此对于那些希望减少社会碳足迹的人来说,该行业应该是一个重点,这项研究表明,可以将可持续性材料的使用优先级,以造成最大的影响。这些发现首先发表在《清洁杂志》杂志上。/end < /div>
定量2D和3D期对比MRI:血流和血管壁参数的优化分析A.德国弗雷堡(Freiburg)简介:由于时空分辨率和SNR的有限,CINE相对比(PC)-MRI数据的量化很具有挑战性。此处介绍的方法结合了速度及其局部衍生物的“格林定理”和B型插值插值,以提供优化的血流和容器壁参数的定量。结果,除血流量参数(如流量量或流体面积)外,还可以从数据中计算出矢量壁剪应力(WSS)和振荡剪切指数(OSI)的空间和时间变化。心血管系统的功能诊断是不断获得兴趣的(1),在这种情况下,WSS是内皮细胞功能的重要决定因素(2-4)。流量和壁参数定量,其中有19个健康志愿者在8个平面中,沿着整个胸主动脉分布,使用高分辨率平面2D和较低分辨率的体积3D Cine PC-MRI,并具有3个方向速度编码。合成流数据,模式间可变性和观察者间的可变性用于评估该方法的准确性。据我们所知,这些结果构成了对完整动脉切片的血流参数和矢量WSS的体内分析的首次报告。1。2,左)。2,右)。Methods: All experiments were performed at 3T (Trio, Siemens, Germany) using a respiration controlled and ECG gated rf-spoiled gradient echo sequence with 3-directional velocity encoding in 2D ( 2D-CINE-3dir.PC : spatial resolution: 1.24-1.82 x 1.25-1.82 x 5 mm 3 , temporal resolution: 24.4 ms, Venc = 150 cm/s)和3D(3D-Cine-3ddir.pc:空间分辨率:2.71-2.93 x 1.58-1.69 x 2.60-3.5 mm 3,时间分辨率:48.8 ms,48.8 ms,Venc = 150 cm/s)(5)(5)。在沿胸主动脉分布的8个平面上进行进行壁分析(图 3,右)使用2d-cine-3ddir.pc和3d-cine-3ddir.pc进行比较,如图所示 数据分析和细分集成在基于MATLAB(美国Mathworks)的内部分析工具(6)中。 对于每个Cine时间框架,使用B-Spline轮廓分割了血管腔(图1,MID)。 随后的速度数据的立方B型插值(7)提供了插值速度及其在容器轮廓处的局部衍生物(图1,底部)。 基于分析血管腔轮廓,“ Green's Theorem”和B-Spline插值,面积和流量是从单个积分中有效且准确地计算出来的。 WSS载体是通过假设横向分析平面而没有流过容器壁的变形张量(8)的变形张量。 流量定量工具已通过各种分辨率和19位健康志愿者的合成抛物线流数据进行评估。 结果:系统多样化的空间分辨率的影响表明,WSS受到更大的影响,而总流量保持相对恒定(图 参考:(1)Y. Richter和E.R.进行壁分析(图3,右)使用2d-cine-3ddir.pc和3d-cine-3ddir.pc进行比较,如图数据分析和细分集成在基于MATLAB(美国Mathworks)的内部分析工具(6)中。对于每个Cine时间框架,使用B-Spline轮廓分割了血管腔(图1,MID)。随后的速度数据的立方B型插值(7)提供了插值速度及其在容器轮廓处的局部衍生物(图1,底部)。基于分析血管腔轮廓,“ Green's Theorem”和B-Spline插值,面积和流量是从单个积分中有效且准确地计算出来的。WSS载体是通过假设横向分析平面而没有流过容器壁的变形张量(8)的变形张量。流量定量工具已通过各种分辨率和19位健康志愿者的合成抛物线流数据进行评估。结果:系统多样化的空间分辨率的影响表明,WSS受到更大的影响,而总流量保持相对恒定(图参考:(1)Y. Richter和E.R.表中给出了流量,平均WSS和圆周WSS的百分比。2D和3D-Cine-PC之间的各种时空分辨率导致流量和面积的相对差异在18%以下,但WSS和OSI的相对误差较高,而OSI则为45%和65%(图。说明了我们方法对WSS空间分布进行详细评估的潜力,图3显示了基于2D和3D数据的一名志愿者的WSS向量和OSI。在上升主动脉(切片1)和主动脉弓(切片3)中,WSS矢量呈现出与主动脉中螺旋流量模式相似的实质性右手圆周分量。讨论:此处介绍的方法旨在使用Green的定理和Cubic B-Spline插值来量化血流和血管壁参数。与假设血流模型的其他方法相反(例如抛物面(9)或数值流仿真(10)),我们的方法不是基于关于流量轮廓的限制性假设。简单的参数,例如流量量,即使对于低分辨率数据也可以准确量化,而诸如WSS之类的派生参数则受到时空分辨率的限制。尽管WSS值在3D-Cine-3dir.pc中被系统地低估了,但志愿者之间的高一致性表明了对相对病理WSS改变的分析的潜在WSS估计,如最初的患者结果所示。Edelman,《流通》 113:2679-2682(2006)(2)Cheng C.等,循环113(23):2744-2753(2006)(2006)(3)Wentzel J.J.等,J Am Coll Cardiol。 45:846-54(2005)(4)Davies PF,Physiol。 修订版Edelman,《流通》 113:2679-2682(2006)(2)Cheng C.等,循环113(23):2744-2753(2006)(2006)(3)Wentzel J.J.等,J Am Coll Cardiol。45:846-54(2005)(4)Davies PF,Physiol。修订版我们的WSS测量值与源自相比的MRI的下降和腹主动脉(3,11-13)的发表结果非常吻合,该结果在心脏周期中提供了相似的平均WSS值(0.18至0.95至0.95 N/M 2)。对WSS沿主动脉的分析表明,WSS的相关圆周成分的存在为10-20%,这表明必须考虑WSS的向量性质以完全表征主动脉中的壁剪力。75:519-560(1995)(5)Markl M.等,J Magn Reson IM。 25:824-831(2007)。 (6)Stalder A. F.等,Proc。 ISMRM流动和运动研讨会,纽约(2006)(7)Unser M.,IEEE信号过程。 mag。 16 22–38(1999)(8)Papathanasopoulou P.等,J。Magn。 共振。 im。 17(2):153-162(2003)(9)Oyre S.等,Magn。 共振。 Med。 40:645-655(1998)(10)Shojima等,中风35:2500-2505(2004)(11)Moore Je Jr.等,动脉粥样硬化110:225-40(1994)(1994)(1994)(12) 32:128 –3475:519-560(1995)(5)Markl M.等,J Magn Reson IM。25:824-831(2007)。 (6)Stalder A. F.等,Proc。 ISMRM流动和运动研讨会,纽约(2006)(7)Unser M.,IEEE信号过程。 mag。 16 22–38(1999)(8)Papathanasopoulou P.等,J。Magn。 共振。 im。 17(2):153-162(2003)(9)Oyre S.等,Magn。 共振。 Med。 40:645-655(1998)(10)Shojima等,中风35:2500-2505(2004)(11)Moore Je Jr.等,动脉粥样硬化110:225-40(1994)(1994)(1994)(12) 32:128 –3425:824-831(2007)。(6)Stalder A. F.等,Proc。ISMRM流动和运动研讨会,纽约(2006)(7)Unser M.,IEEE信号过程。mag。16 22–38(1999)(8)Papathanasopoulou P.等,J。Magn。共振。im。17(2):153-162(2003)(9)Oyre S.等,Magn。共振。Med。40:645-655(1998)(10)Shojima等,中风35:2500-2505(2004)(11)Moore Je Jr.等,动脉粥样硬化110:225-40(1994)(1994)(1994)(12) 32:128 –34