超弹性圆柱壳在加压下表现出的显著变形使其成为可编程充气结构的理想平台。如果施加负压,圆柱壳将弯曲,从而产生一系列丰富的变形模式,由于选择了超弹性材料,所有这些变形模式都可以完全恢复。虽然真空下的初始屈曲事件很容易理解,但这里探索了后屈曲状态,并确定了设计空间中发生耦合扭曲收缩变形模式的区域;通过仔细控制我们的均质壳的几何形状,可以控制收缩与扭曲的比例。此外,可以通过改变我们壳的圆周厚度来解锁作为后屈曲变形模式的弯曲。由于这些软壳可以从屈曲引起的显著变形中完全恢复,因此可以利用这些不稳定性驱动的变形来构建能够通过单个驱动输入进行可编程运动序列的软机器。
近年来,人工智能 (AI) 技术已应用于日常生活的核心方面。我们在使用演示程序或玩游戏时会遇到自动设计建议,其中情节或角色是在 AI 工具的帮助下准备的。设计师如何受到这种变化的影响也是最近研究的主题 (Stembert & Harbers, 2019)。例如,AI 已用于分析创意作品 (Maher & Fisher, 2012)、探索给定产品可能形式的设计空间 (Burnap 等人, 2016) 和生成设计 (Kazi 等人, 2017; Matejka 等人, 2018)。基于 AI 的系统已成功生成非显而易见的解决方案,这些解决方案可与人类的聪明才智相媲美,有时甚至超越人类的聪明才智 (Serra & Miralles, 2021)。因此,可以合理地期望 AI 能够支持人类设计师探索非显而易见的问题和解决方案空间。
软件环境支持实施基于不确定性的多学科优化。非支配排序遗传算法 NSGA-II 强调了性能优化和成本降低之间的权衡及其对最佳设计的影响。基于可靠性的约束减少了解决方案空间,并通过将帕累托前沿移离最佳目标值来影响飞机的最终设计。ModelCenter 提供了有效的工具来应对不确定性下优化的高复杂性。虽然虚拟机上的并行模拟提高了计算性能,但 DOE 筛选可以通过消除不相关的输入来减少设计空间。将多目标转换为单目标函数将寻找最优解的重点放在全局帕累托前沿的一部分上,并大大缩短了计算时间。然而,这种解决方案需要在目标之间建立一个层次结构,因此留下了非支配设计解决方案。
在一个越来越多样化和庆祝多样性的世界中,对于HCI而言,重要的是要接受不断发展的方法和技术来改造其用户的多样性并以能力为中心。相互依存理论是这种发展的一个例子,突出了人类与技术之间的人际关系以及如何设计技术来满足人们的共同目标和成果,无论他们的能力如何。这需要当代对“能力多样性协作”的理解,这激发了这一评论。在这篇评论中,我们对过去二十年来来自ACM数字库中的117篇论文进行了分析。我们贡献(1)独立的分类法和能力多样性的协作框架,(2)对当前设计空间进行的曲面讨论和映射,以及(3)未来的研究机会和挑战。最后,我们发布了我们的数据和分析工具,以鼓励HCI研究社区为这一持续的Efort做出贡献。
摘要 - 浮点精度调整(FPPT)搜索TAR-获取可降低精确度的计算程序的程序,从而交易绩效准确性。fppt通过搜索程序变体的混合精确设计空间来最大程度地受到某些正确性crite-crite-ria的约束。鉴于它们的计算强度和复杂性,天气和气候模型呈现出主要的FPPT目标。然而,过去在该领域的FPPT尝试受到域专家(乏味)和低精度仿真(掩盖速度)的手动努力的限制。自动化和性能引导的技术自然是感兴趣的,但尚未在此规模上探索。由定制的福特转换工具促进,本文介绍了第一个案例研究:基于在三个现实世界中的天气和气候模型中将FPPT应用于计算热点的各种结果(MPAS-A,ADCIRC和MOM6)(MOM6),我们确定和讨论了众多的范围,以获取最佳的范围,以获取最佳的范围。 这。
希望达到最佳功率、性能和面积 (PPA) 目标的设计工程师可以利用 Synopsys 设计空间优化 (DSO.ai™) 解决方案。验证工程师可以利用 Synopsys 验证空间优化 (VSO.ai™) 解决方案更快地实现更高质量的验证覆盖率。测试工程师面临着减少测试模式数量并优化缺陷覆盖率的挑战,可以采用 Synopsys 测试空间优化 (TSO.ai™) 解决方案。模拟设计工程师可以使用 Synopsys 模拟空间优化 (ASO.ai™) 来提高模拟设计的性能和稳健性,方法是优化跨多个测试台和数百个 PVT(工艺、电压、温度)角的复杂模拟设计,以快速收敛到符合工程规范的最佳设计点。Synopsys ASO.ai 中包含的其他技术使设计人员能够跨技术节点快速迁移模拟设计。
在设计研究、任务分析、生命周期分析、性能预测和诊断中发挥重要作用。国际燃气轮机行业每年价值 300 亿英镑。欧盟燃气轮机行业是先进燃气轮机发动机和循环(用于飞机推进以及陆基和海基应用)研发的主要贡献者。目前,美国是欧洲最大的燃气轮机技术竞争对手。美国发动机制造商和研究机构(包括 NASA、通用电气、普惠、佐治亚理工学院和麻省理工学院等)已合作开发了 NPSS(数值推进系统模拟),作为 EDS(环境设计空间)项目的一部分。NPSS 是一种功能强大的燃气轮机模拟工具,具有多种先进功能。不幸的是,欧洲燃气轮机行业普遍无法使用 NPSS 及其相关技术。PROOSIS 实际上是欧盟的 NPSS 对应机构。PROOSIS 包含先进的燃气轮机模拟技术,为欧盟合作伙伴在这个高度
在本文中,我们调查了机器人可扩展结构的新兴设计空间,重点关注此类结构如何改善人机交互。我们详细介绍了寻求将此类结构整合到自己工作中的研究人员的各种实施考虑因素,并描述了可扩展结构如何为各种不同的机器人和应用带来新颖的交互形式,包括使机器人能够改变其形态以增强或获得全新能力(例如增强操纵或导航)的结构、提高机器人安全性的结构、实现新形式通信的结构以及使机器人群能够单独和集体改变形状的结构。为了说明如何将这些考虑因素付诸实践,我们还介绍了我们自己在可扩展结构机器人方面的研究中的三个案例研究,分享了我们的设计过程和我们的发现,这些发现涉及此类结构如何使机器人产生新颖的行为,从而吸引人类的注意力、传达信息、模仿情感并提供新型动态可供性。
将触摸屏交互整合到驾驶舱飞行系统中,为飞机制造商、航空公司和飞行员提供了多种潜在优势。然而,振动和湍流对可靠的交互提出了挑战。我们研究了支撑触摸交互的设计空间,它允许用户通过在触摸屏上支撑多个手指,在完成选择之前机械地稳定选择。我们的目标是在高振动水平下实现快速准确的目标选择,而不会在没有振动时妨碍交互性能。评估了三种不同的支撑触摸方法,使用双击、停留或力阈值结合启发式选择标准来区分有意选择和并发支撑接触。我们进行了一项实验,以测试这些方法在抽象选择任务和更现实的飞行任务中的表现。研究结果证实,支撑可以提高振动期间的性能,并表明双击是测试方法中最好的。
本文通过引入Hetarch(用于设计异质量子系统的工具箱)来实现异质FTQC设计的挑战,并使用它来探索异性设计方案。使用分层方法,我们可以将量子算法分解为较小的操作(类似于经典应用程序内核),从而大大简化了设计空间和所得的权衡。专门针对超导系统,我们设计了由多种超导设备组成的优化异质硬件,将物理约束抽象成设计规则,使设备能够将设备组装到针对特定操作的标准单元中。最后,我们提供了一个异质的设计空间探索框架,该框架将模拟负担减少了10个或更多倍,并使我们能够将最佳的设计点提高。我们使用这些技术来设计用于纠缠蒸馏,误差校正和代码传送的超导量子模块,将错误率降低2。6×,10。7×和3。0×与均质系统相比。