NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
粮食不安全是非洲气候变化带来的最大风险之一,那里有90%至95%的非洲粮食生产是雨天,很大一部分人口已经面临慢性饥饿和营养不良。尽管有几项研究发现了在气候变化情景下未来农作物产量损失的有力证据,但农作物和地区之间存在广泛的差异以及大型建模不确定性。这种不足的很大一部分源于气候预测,因为气候模型可能在模拟未来的降水和温度变化方面有所不同,这可能导致未来的作物产生情况。这项工作研究了西非气候变化对西非玉米,小米和高粱作物产量的影响,使用耦合模型对比项目对比项目第五阶段(CMIP5)和新一代来自耦合模型模型库库对间项目的气候模型的预测(CMIP5)(CMIP6)(CMIP6)。我们使用模拟作物建模框架来模拟历史和未来的作物产量,并使用引导技术来评估CMIP5和CMIP6合奏之间作物生产力的预计变化。使用新一代气候模型CMIP6,我们发现CMIP5模拟所示的负作物产量预测大大降低,当大气CO 2浓度在作物模型中所考虑时,也大大增加了作物产量。这种结果突出了在评估该地区气候变化的影响以及最终用户预期适应策略的差异方面仍然存在的巨大不确定性。CMIP5和CMIP6模拟之间作物产量影响的这些差异主要是由于西非温度和沉淀的气候不同。到本世纪末,CMIP6预测在本世纪中叶和较小程度上都显着湿润和凉爽。
方法:我们通过整合多个OMICS数据集对CRC中81个寿命相关基因的影响进行了全面分析。这种分析导致了两种不同的分子亚型的鉴定,并揭示了各个层的寿命相关基因的改变与肿瘤微环境(TME)内的临床病理特征,预后和细胞浸润特性有关。这些模型的培训和验证队列来自TCGA-COAD,TCGA-READ和GSE35279数据集。随后,我们开发了风险评分模型,并采用了Kaplan -Meier方法来估计总体生存(OS)。最终,我们建立了一个基于五个寿命相关基因的预后模型:BEDN3,EXOC3L2,CDKN2A,IL-13和CAPN9。此外,我们评估了风险评分与免疫细胞浸润,微卫星不稳定性和干细胞指数等因素之间的相关性。
基于 EEG 的神经反馈使用心理行为 (MB) 来实现大脑活动的自愿自我调节,并有可能缓解脊髓损伤 (SCI) 后的中枢神经性疼痛 (CNP)。本研究旨在了解神经反馈学习以及 MB 与神经反馈成功之间的关系。25 名非 CNP 参与者和 10 名 CNP 参与者在四次访问中接受了神经反馈训练(强化 9-12 Hz;抑制 4-8 Hz 和 20-30 Hz)。每次访问后,都会采访参与者关于他们使用的 MB。问卷调查了以下因素:自我效能、控制点、动机和神经反馈的工作量。MB 分为心理策略(目标导向的心理活动)和情感(神经反馈期间的情感体验)。与成功的 CNP 参与者相比,成功的非 CNP 参与者明显使用了更多与想象相关的 MS,并报告了更多负面情感。然而,没有任何心理策略与神经反馈成功明确相关。缺乏成功与消极情绪之间存在一定的联系。自我效能与神经反馈成功率呈中等相关(r = < 0.587,p = < 0.020),而控制点、动机和工作量具有低相关性,不显著(r < 0.300,p > 0.05)。对于成功的神经反馈表现而言,情绪可能比心理策略更重要。自我效能与神经反馈成功率相关,这表明,增加对自己神经反馈能力的信心可能会提高神经反馈表现。
抽象问题:线性栖息地是陆生和水生的走廊,可以是自然的或人为的。在这里我们问:两种类型的线性栖息地(道路和河流)的交集如何影响植物物种的多样性,成分和生态属性?地点:法国南部。方法:我们研究了道路河交叉点(桥梁),以测试路边和河滨植物群落中物种的组成,α和β多样性以及对桥梁影响的反应。我们还使用空间预测因子(空间特征向量图)来评估桥梁是否影响定向空间过程(上游向上河轴)结构社区组成。结果:我们表明,桥梁周围的植被与物种组成和生态偏好以及α和β多样性的植被不同于桥梁。我们还发现,桥梁河流和道路植物群落中物种的生态偏好融合。由于不同的干扰方案,桥梁的物种β多样性的周转成分较低,因此导致生物均匀化。然而,我们的结果表明,桥梁对影响物种组成的方向空间过程的影响可以忽略不计。结论:桥梁作为河流和道路的植物社区选择力的强烈影响表明,不应忽略桥梁。我们的发现将有助于开发对两种类型的线性栖息地的更有效管理,以保护其托管的植物物种以及相关的生态功能和所提供的生态系统服务。
零售业越来越多地采用人工智能 (AI),这引发了购物体验的重大变革。然而,人们担心人工智能对消费者的潜在心理影响,有时会导致压力和困惑。随着零售商继续利用人工智能技术来增强客户参与度并优化运营,面对和管理其快速部署带来的潜在风险和不确定性变得越来越重要。该研究考虑了 237 名在线零售客户,以了解决定人工智能负面影响的因素及其对在线零售客户对支持人工智能的电子零售平台的购买意愿的影响。财务信息和安全、消费者信任和人工智能自主性、由于概念新颖而导致的可靠性问题以及系统故障是影响在线零售客户对支持人工智能的电子零售平台的购买意愿的因素。
在Outlook中的修订对公司的评级因素负面影响,在电动两轮车(E2W)市场的竞争强度上提高,这很可能会限制公司未来和延长盈利能力的批量增长。即使该公司仍然是E2W领域的市场领导者,在过去几个月中,在行业竞争强度提高的情况下,它的市场份额也在调节中。因此,在财政开始时达到45-50%的水平,该公司在800万财年的市场份额约为36%。icra还指出,可获得的补贴福利(在新的PM-E驱动方案中,相对于名望II计划)降低了E2W细分市场的盈利能力的时间表,即使该公司一直集中在各种价值工程计划和供应商再生方面,以实现灵活性。该公司继续记录Opbitda利润率(OPM)H1 FY2025的运营损失,为-20.4%,而截至2024财年为-22.7%。公司减少运营损失和最终盈利的能力将仍然是可监控的关键。
人工智能:IEEE-USA 董事会通过的教育渠道和劳动力协调以提高国家竞争力(2024 年 11 月)IEEE-USA 支持公私合作努力,以确保美国劳动力能够应对新兴技术对我们经济的挑战和影响。IEEE-USA 认为,政府、私营部门和非政府机构在最大限度地为新兴人工智能经济中的学生和工人提供机会方面发挥着至关重要的作用;并减轻广泛人工智能部署对个人造成的负面影响。我们认为全面的教育渠道——涵盖小学、中学、大专、技术和社区大学教育——是培养人工智能劳动力的基本基石,而人工智能劳动力对于人工智能驱动的经济成功至关重要。我们主张为现有工人提供技能提升机会,以满足人工智能增强型工作场所的新兴需求。我们认为,对生计受到人工智能系统负面影响的工人的支持至关重要。我们主张为失业工人提供安全网计划,帮助他们再培训并重新融入劳动力市场;满足需求的工作岗位;保持经济活力。为此,IEEE-USA 建议美国政府:
就环境而言,可再生能源可以说是与减缓气候变化最为相关的能源,这是有充分理由的。利用可再生能源发电几乎不会产生导致气候变化的温室气体排放。与化石燃料发电相比,这种减少的温室气体排放量意义重大。例如,用于发电的天然气燃烧产生 389 克二氧化碳当量/千瓦时,而煤炭燃烧产生 1,010 克二氧化碳当量/千瓦时。4 可再生能源在生命周期温室气体排放方面也胜过化石燃料。例如,太阳能和风能每产生 1 千瓦时能源分别产生 43 克和 13 克二氧化碳当量,主要由其制造和建设相关的排放组成。5 这些生命周期排放量与天然气和煤炭的排放量相比相形见绌,天然气和煤炭分别为每千瓦时 486 克和 1,001 克二氧化碳当量。从排放强度的角度来看,可再生能源显然是企业的首选能源,因为它们可以实现业务脱碳,并减少受物理和转型气候风险的影响。
参考文献1。Lazo M,Clark JM。非酒精性脂肪肝病的流行病学:一种全球视角。Semin Liver Dis.2008; 28:339-50。2。Bajaj S,Nigam P,Luthra A等。一项关于胰岛素抵抗,代谢共同变化和预测评分的病例对照研究。印度J Med Res。2009; 129(3):285-292。 3。 Mohan V,Farooq S,Deepa M,Ravikumar R,Pitchumoni CS。 与不同等级的葡萄糖不耐症和代谢综合征有关的南印第安人非酒精脂肪肝病患病率。 糖尿病临床实践。 2009; 84(1):84-91。doi:10.1016/j.diabres.2008.11.039 4。 Romeo S,Kozlitina J,Xing C等。 PNPLA3中的遗传变异赋予对非酒精性脂肪肝病的敏感性。 nat Genet。 2008; 40(12):1461-1465。 doi:10.1038/ng.257 5。 Severson TJ,Bostur S,Bonkovsky HL。 影响非酒精性脂肪肝病的遗传因素:系统的临床综述。 世界J胃烯醇。 2016; 22(29):6742-6756。doi:10.3748/wjg.v22.i29.6742 6。 Kozlitina J,Smagris E,Stender S等。 外显域的关联研究确定了一种TM6SF2变体,该变体赋予了对非酒精性脂肪肝病的易感性。 nat Genet。 2014; 46(4):352-356。 doi:10.1038/ng.2901 7。 Oliveira Ain,Malta FM,Zitelli PMY,Salles APM,Gomes-Gouvea MS,Nastri ACS,Pinho JRR,Carrilho JRR,Carrilho FJ,Oliveira CP,Mendes-CorrêaMC,Pessoa MC,Pessoa MG,Mazo DF。 PMID:33622266; PMCID:PMC7901065。 8。2009; 129(3):285-292。3。Mohan V,Farooq S,Deepa M,Ravikumar R,Pitchumoni CS。与不同等级的葡萄糖不耐症和代谢综合征有关的南印第安人非酒精脂肪肝病患病率。糖尿病临床实践。2009; 84(1):84-91。doi:10.1016/j.diabres.2008.11.039 4。Romeo S,Kozlitina J,Xing C等。PNPLA3中的遗传变异赋予对非酒精性脂肪肝病的敏感性。nat Genet。2008; 40(12):1461-1465。 doi:10.1038/ng.257 5。 Severson TJ,Bostur S,Bonkovsky HL。 影响非酒精性脂肪肝病的遗传因素:系统的临床综述。 世界J胃烯醇。 2016; 22(29):6742-6756。doi:10.3748/wjg.v22.i29.6742 6。 Kozlitina J,Smagris E,Stender S等。 外显域的关联研究确定了一种TM6SF2变体,该变体赋予了对非酒精性脂肪肝病的易感性。 nat Genet。 2014; 46(4):352-356。 doi:10.1038/ng.2901 7。 Oliveira Ain,Malta FM,Zitelli PMY,Salles APM,Gomes-Gouvea MS,Nastri ACS,Pinho JRR,Carrilho JRR,Carrilho FJ,Oliveira CP,Mendes-CorrêaMC,Pessoa MC,Pessoa MG,Mazo DF。 PMID:33622266; PMCID:PMC7901065。 8。2008; 40(12):1461-1465。 doi:10.1038/ng.257 5。Severson TJ,Bostur S,Bonkovsky HL。影响非酒精性脂肪肝病的遗传因素:系统的临床综述。世界J胃烯醇。2016; 22(29):6742-6756。doi:10.3748/wjg.v22.i29.6742 6。Kozlitina J,Smagris E,Stender S等。外显域的关联研究确定了一种TM6SF2变体,该变体赋予了对非酒精性脂肪肝病的易感性。nat Genet。2014; 46(4):352-356。 doi:10.1038/ng.2901 7。 Oliveira Ain,Malta FM,Zitelli PMY,Salles APM,Gomes-Gouvea MS,Nastri ACS,Pinho JRR,Carrilho JRR,Carrilho FJ,Oliveira CP,Mendes-CorrêaMC,Pessoa MC,Pessoa MG,Mazo DF。 PMID:33622266; PMCID:PMC7901065。 8。2014; 46(4):352-356。 doi:10.1038/ng.2901 7。Oliveira Ain,Malta FM,Zitelli PMY,Salles APM,Gomes-Gouvea MS,Nastri ACS,Pinho JRR,Carrilho JRR,Carrilho FJ,Oliveira CP,Mendes-CorrêaMC,Pessoa MC,Pessoa MG,Mazo DF。PMID:33622266; PMCID:PMC7901065。8。PNPLA3和TM6SF2多态性在巴西慢性丙型肝炎患者中对肝纤维化和代谢异常的作用C. BMC胃肠道。2021 Feb 23; 21(1):81。 doi:10.1186/s12876-021-01654-3。SOOD V,Khanna R,Rawat D,Sharma S,Alam S,Sarin SK。研究小儿非酒精脂肪肝疾病中家庭聚类和PNPLA3基因多态性的研究。印度小儿科。2018年7月15日; 55(7):561-567。 pmid:30129536。 9。 Bhatt SP,Nigam P,Misra A,Guleria R,Pandey RM,Pasha MA。 含有非酒精性脂肪肝病的亚洲印第安人中含patatin样磷脂酶结构域蛋白3(PNPLA-3)基因的遗传变异。 Metab Syndr Relat疾病。 2013年10月; 11(5):329-35。 doi:10.1089/met.2012.0064。 EPUB 2013 JUN 4。 PMID:23734760。 10。 Koehler EM,Plompen EP,Schouten JN等。 糖尿病的存在和脂肪变性与一般人群中的肝脏僵硬有关:鹿特丹研究。 肝病学。 2016; 63(1):138-147。 doi:10.1002/hep.27981 11。 张L,You W,Zhang H,Peng R,Yao A,Li X等。 PNPLA3多态性(RS738409)和非酒精性脂肪肝病风险和相关表型:荟萃分析。 J胃肠肝素。 2015; doi:10.1111/jgh.12889 12。 Anstee QM,Day CP。 NAFLD的遗传学。 nat Rev Gastroenterol Hepatol。 2013; 10:645–655。 doi:10.1038/nrgastro.2013.182 PMID:24061205 13。 Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。 J脂质res。2018年7月15日; 55(7):561-567。pmid:30129536。9。Bhatt SP,Nigam P,Misra A,Guleria R,Pandey RM,Pasha MA。 含有非酒精性脂肪肝病的亚洲印第安人中含patatin样磷脂酶结构域蛋白3(PNPLA-3)基因的遗传变异。 Metab Syndr Relat疾病。 2013年10月; 11(5):329-35。 doi:10.1089/met.2012.0064。 EPUB 2013 JUN 4。 PMID:23734760。 10。 Koehler EM,Plompen EP,Schouten JN等。 糖尿病的存在和脂肪变性与一般人群中的肝脏僵硬有关:鹿特丹研究。 肝病学。 2016; 63(1):138-147。 doi:10.1002/hep.27981 11。 张L,You W,Zhang H,Peng R,Yao A,Li X等。 PNPLA3多态性(RS738409)和非酒精性脂肪肝病风险和相关表型:荟萃分析。 J胃肠肝素。 2015; doi:10.1111/jgh.12889 12。 Anstee QM,Day CP。 NAFLD的遗传学。 nat Rev Gastroenterol Hepatol。 2013; 10:645–655。 doi:10.1038/nrgastro.2013.182 PMID:24061205 13。 Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。 J脂质res。Bhatt SP,Nigam P,Misra A,Guleria R,Pandey RM,Pasha MA。含有非酒精性脂肪肝病的亚洲印第安人中含patatin样磷脂酶结构域蛋白3(PNPLA-3)基因的遗传变异。Metab Syndr Relat疾病。2013年10月; 11(5):329-35。 doi:10.1089/met.2012.0064。EPUB 2013 JUN 4。 PMID:23734760。 10。 Koehler EM,Plompen EP,Schouten JN等。 糖尿病的存在和脂肪变性与一般人群中的肝脏僵硬有关:鹿特丹研究。 肝病学。 2016; 63(1):138-147。 doi:10.1002/hep.27981 11。 张L,You W,Zhang H,Peng R,Yao A,Li X等。 PNPLA3多态性(RS738409)和非酒精性脂肪肝病风险和相关表型:荟萃分析。 J胃肠肝素。 2015; doi:10.1111/jgh.12889 12。 Anstee QM,Day CP。 NAFLD的遗传学。 nat Rev Gastroenterol Hepatol。 2013; 10:645–655。 doi:10.1038/nrgastro.2013.182 PMID:24061205 13。 Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。 J脂质res。EPUB 2013 JUN 4。PMID:23734760。10。Koehler EM,Plompen EP,Schouten JN等。糖尿病的存在和脂肪变性与一般人群中的肝脏僵硬有关:鹿特丹研究。肝病学。2016; 63(1):138-147。 doi:10.1002/hep.27981 11。 张L,You W,Zhang H,Peng R,Yao A,Li X等。 PNPLA3多态性(RS738409)和非酒精性脂肪肝病风险和相关表型:荟萃分析。 J胃肠肝素。 2015; doi:10.1111/jgh.12889 12。 Anstee QM,Day CP。 NAFLD的遗传学。 nat Rev Gastroenterol Hepatol。 2013; 10:645–655。 doi:10.1038/nrgastro.2013.182 PMID:24061205 13。 Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。 J脂质res。2016; 63(1):138-147。 doi:10.1002/hep.27981 11。张L,You W,Zhang H,Peng R,Yao A,Li X等。PNPLA3多态性(RS738409)和非酒精性脂肪肝病风险和相关表型:荟萃分析。J胃肠肝素。2015; doi:10.1111/jgh.12889 12。Anstee QM,Day CP。NAFLD的遗传学。nat Rev Gastroenterol Hepatol。2013; 10:645–655。doi:10.1038/nrgastro.2013.182 PMID:24061205 13。Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。 J脂质res。Shen JH,Li YL,Li D,Wang NN,Jing L,Huang YH。J脂质res。PNPLA3基因和肝硬化的RS738409(I148M)变体:荟萃分析。2015; 56:167–175。doi:10.1194/jlr.m048777 pmid:25378656 14。Singal AG,Manjunath H,Yopp AC,Beg MS,Marrero JA,Gopal P等。PNPLA3对肝细胞癌纤维化进展和发育的影响:一种元分析。Am J胃肠道。2014; 109:325–334。doi:10.1038/ajg.2013.476 PMID:24445574 15。Shen J,Wong GL,Chan HL,Chan Hy,Yeung DK,Chan RS等。pNPLA3基因多态性在没有代谢的社区受试者中说明了脂肪肝