预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月17日发布。 https://doi.org/10.1101/2025.02.13.637760 doi:Biorxiv Preprint
摘要 - 检测恶意攻击的网络入侵检测系统(NID)继续面临挑战。NID通常是离线开发的,而它们面临自动生成的端口扫描尝试,从而导致了从对抗性适应到NIDS响应的显着延迟。为了应对这些挑战,我们使用专注于Internet协议地址和目标端口的超图来捕获端口扫描攻击的不断发展的模式。然后使用派生的基于超图的指标集来训练集合机学习(ML)基于NID的NID,以高精度,精确和召回表演以高精度,精确性和召回表演以监视和检测端口扫描活动,其他类型的攻击以及对抗性入侵。通过(1)入侵示例,(2)NIDS更新规则,(3)攻击阈值选择以触发NIDS RETRAINGE RECESTS的组合,以及(4)未经事先了解网络流量本质的生产环境。40个场景是自动生成的,以评估包括三个基于树的模型的ML集成NID。使用CIC-IDS2017数据集进行了扩展和评估所得的ML集合NIDS。结果表明,在更新的nids规则的模型设置下(特别是在相同的NIDS重新培训请求上重新训练并更新所有三个模型),在整个仿真过程中,提出的ML集合NIDS明智地进化了,并获得了近100%的检测性能,并获得了近100%的检测性能。
随着大规模开放在线课程的广泛流行,个性化的课程推荐由于吸引用户的学习效率而变得越来越重要。在实现有希望的表演时,目前的作品在用户和其他MOOC实体中所遭受的不同。为了解决这个问题,我们建议使用多个通道H ypergraphs神经网络进行H ierarchical增强学习(称为HHCOR)。具体来说,我们首先构建了一个在线课程超图作为环境,以考虑所有实体,以捕获复杂的关系和历史信息。然后,我们设计了一种多通道的预言机制来汇总在线课程超图中的嵌入,并通过注意力层提取用户。此外,我们采取了两级决策:评级课程的低级效力,而高级级别则将这些考虑因素整合在一起以最终确定该决定。最后,我们在两个现实世界数据集上进行了广泛的实验,定量结果证明了该方法的有效性。
摘要。生存分析对于乳腺癌治疗中的临床决策和预后至关重要。最近的多模式方法利用组织病理学图像和大量RNA-Seq来提高生存预测性能,但是这些方法无法在细胞水平上探索空间分离。在这项工作中,我们提出了一个多模式超图神经网络,用于生存分析(MHNN-SURV),该神经网络涉及空间转录组预测的预训练模型。该方法的特征是完全使用组织病理学图像来揭示形态学和遗传信息,从而改善了异质性的解释。具体来说,MHNN-SURV首先将全片成像(WSI)切成斑块图像,然后分别提取图像特征并分别预测空间转录组。sub-sub-因此,基于图像的超图是基于三维最近的邻于关系构建的,而基于基因的超图是基于基因表达相似性而形成的。通过融合双重超图,MHNN-SURV使用COX比例危害模型对乳腺癌进行了深入的生存分析。实验结果表明,在生存分析中,MHNN-SURV优于最先进的多模式模型。
高阶相互作用(HOI)在现实世界中的系统和应用中无处不在。对HOI的深度学习的调查已成为数据挖掘和机器学习社区的宝贵议程。由于HOI的网络是数学上的,因此Hypergraph神经网络(HNN)已成为表示超图表学习的强大工具。鉴于新兴趋势,我们介绍了专门针对HNN的首次调查,并提供了深入和逐步指南。广义,本调查概述HNN架构,培训策略和应用程序。首先,我们将现有的HNN分解为四个设计组件:(i)输入功能,(ii)输入结构,(iii)消息传递方案和(iv)培训策略。第二,我们研究了HNNS如何通过其每个组成部分来解决和学习HOI。第三,我们概述了HNN在建议,生物信息学和医学科学,时间序列分析和计算机视觉中的最新应用。最后,我们以讨论局限性和未来方向的讨论来结束。
首先,了解这些一维代码和细胞复合体会很有用。具体来说,我们将研究这些一维细胞复合体与代码属性的关系。回想一下,一维细胞复合体由一维对象(边)和零维对象(顶点)组成。还有一个边界图,它将一些顶点与一些边的边界标识在一起,如图 2 所示。这看起来很像我们上次看到的 Tanner 图。因此,我们可以将经典代码与这个一维链复合体关联起来。由于在这种情况下 Tanner 图是对称的,我们可以决定是否将变量分配给边并将奇偶校验分配给顶点,反之亦然。
摘要:科学家已经证明,成年大鼠大脑某个区域的神经元从其出生地迁移到大脑的其他部分。同样的过程也发生在成年人身上。没有有效的可视化工具来查看人脑的功能和结构。在本文中,我们专注于设计一个框架,以更多地了解阿尔茨海默病及其人脑神经元的过程。这个框架被称为基于超图的神经元重建框架。它有助于通过超图的构建和重建来映射神经元的诞生和死亡。该框架还识别神经元生命周期中的结构变化。它的性能通过小世界网络和稳健的连接度量进行了定量评估。索引词:超图、多级神经元、脑部疾病、可视化、通信网络。
摘要:代谢网络可能是最具挑战性和最重要的生物网络之一。他们的研究提供了有关生物学途径的工作方式以及特定生物体对环境或治疗的鲁棒性的见解。在这里,我们提出了一个有针对边缘的顶点重量作为代表代谢网络的新框架的定向超图。这种基于超级图的表示捕获了代谢物和反应之间的高阶相互作用,以及反应和化学计量权重的方向性,从而保留了所有必需信息。在此框架内,我们提出了通信性和搜索信息作为指标,以量化有向超图的鲁棒性和复杂性。我们探讨了网络方向对这些度量的含义,并通过将它们应用于小型大肠杆菌核心模型来说明了一个实践示例。此外,我们比较了30种不同模型的代谢模型的鲁棒性和复杂性,并连接结构和生物学特性。我们的发现表明抗生素耐药性与高结构鲁棒性有关,而复杂性可以区分真核和原核生物。
一种新化合物的药物开发流程可能持续 10-20 年,耗资超过 100 亿美元。药物再利用提供了一种更省时省钱的替代方案。基于网络图表示的计算方法(由疾病节点及其相互作用的混合组成)最近产生了新的药物再利用假设,包括适用于 COVID-19 的候选药物。然而,这些相互作用组在设计上仍然是聚合的,并且通常缺乏疾病特异性。这种信息稀释可能会影响药物节点嵌入与特定疾病的相关性、由此产生的药物-疾病和药物-药物相似性得分,从而影响我们识别新靶点或药物协同作用的能力。为了解决这个问题,我们建议构建和学习疾病特异性超图,其中超边编码各种长度的生物途径。我们使用改进的 node2vec 算法来生成通路嵌入。我们评估了我们的超图为一种无法治愈但普遍存在的疾病——阿尔茨海默病 (AD) 寻找再利用靶标的能力,并将我们的排序建议与来自最先进的知识图谱——多尺度相互作用组的建议进行比较。使用我们的方法,我们成功地确定了 7 个有希望的 AD 再利用候选药物,这些候选药物被多尺度相互作用组评为不太可能的再利用靶标,但现有文献提供了支持证据。此外,我们的药物再定位建议附有解释,引出了合理的生物学途径。未来,我们计划将我们提出的方法扩展到 800 多种疾病,将单一疾病超图组合成多疾病超图,以解释具有风险因素的亚群或编码特定患者的合并症,以制定个性化的再利用建议。
确定药物,微生物和疾病之间的潜在关联对于探索发病机理和改善精确医学具有重要意义。有很多用于成对关联预测的计算方法,例如药物微生物和微生物 - 疾病酶关联,但很少有方法集中在高阶三质量药物 - 微生物 - 疾病(DMD)关联上。由HyperGraph神经网络(HGNN)的进步驱动,我们希望它们能够完全限制高级相互作用模式,这是由DMD关联和重新确定声音预测性能提出的Hy-Pergraph背后的。但是,由于体外筛查的高成本,已确认的DMD关联不足,该筛选形成了稀疏的DMD超图,因此具有次级通用能力。为了减轻限制,我们提出了一个dmd关联预测,提出了一个名为MCHNN的经验化学习。我们在DMD HyperGraph上设计了一种新颖的多视图对比学习(CL)作为辅助任务,该任务指导HGNN学习更多的判别性代表并增强通用能力。extentiment实验表明,MCHNN在DMD关联预先字典中实现了令人满意的性能,更重要的是,在稀疏的DMD Hypergraph上设计了我们设计的多视图CL的效率。