事实证明,二维层状材料的氧化有利于形成氧化物/二维材料异质结构,这为低功耗电子设备的新范式打开了大门。硫化镓(II)(𝜷-GaS)是一种六方相 III 族单硫属化物,是一种宽带隙半导体,单层和少层形式的带隙超过 3 eV。其氧化物氧化镓(Ga 2 O 3)兼具大带隙(4.4-5.3 eV)和高介电常数(≈ 10)。尽管这两种材料都具有技术潜力,但原子级厚度的𝜷-GaS 的受控氧化仍未得到充分探索。本研究重点关注使用氧等离子体处理对𝜷-GaS 进行受控氧化,以解决现有研究中的重大空白。结果表明,在暴露于 10 W 的 O 2 时,能够形成厚度为 4 nm 的超薄天然氧化物 (GaS x O y ),从而形成 GaS x O y /GaS 异质结构,其下方的 GaS 层保持完整。通过将此类结构集成在金属电极之间并施加电压斜坡或脉冲等电应力,研究了它们在电阻式随机存取存储器 (ReRAM) 中的应用。所产生的氧化物的超薄特性可实现低操作功率,能耗低至每次操作 0.22 nJ,同时分别保持 350 次循环和 10 4 s 的耐久性和保持力。这些结果表明基于氧化的 GaS x O y /GaS 异质结构在电子应用,特别是低功耗存储设备中具有巨大的潜力。
本文探讨了脉冲激光沉积 (PLD) 透明导电氧化物 (TCO) 在高质量超薄多晶硅基钝化接触上的适用性。通过减小多晶硅层厚度,可以最大限度地减少多晶硅层引起的寄生吸收。然而,多晶硅触点上的 TCO 沉积(通常通过溅射)会导致严重的沉积损伤,并进一步加剧较薄多晶硅层(<20 纳米)的表面钝化。虽然可以使用高温(约 350 摄氏度)热处理来部分修复表面钝化质量,但由于在多晶硅/ITO 界面形成了寄生氧化层,接触电阻率严重增加。或者,我们表明 PLD TCO 可用于减轻超薄(约 10 纳米)多晶硅层的损伤。通过增加沉积压力可以进一步改善多晶硅触点钝化,同时通过在高质量超薄多晶硅(n+)触点上使用 PLD 掺杂铟的氧化锡 (ITO) 层可实现低触点电阻率(约 45 m Ω cm 2)和良好的热稳定性(高达 350 °C)。通过将 PLD ITO 膜的出色光电特性与 10 nm 薄多晶硅触点相结合,可以实现高度透明的正面触点。
随着功率转化效率的快速进展,钙钛矿太阳能电池(PSC)表现出巨大的潜力,因为下一代低成本,有效的太阳能电池设备。超薄的纯净和broded的Mote 2单层材料是钙钛矿太阳能电池应用中替代电子传输材料的有前途的候选物。基于流行的密度功能理论(DFT),使用投影仪增强平面波(PAW)计算了这些材料的电子特性。使用Pardew-Burkeernzerhof广义梯度近似(PBE-GGGA)计算这些特性。使用完全相对论的自旋轨道耦合(SOC)确定了所考虑材料的带状结构。我们的结果表明,纯和BR掺杂的2D-MOTE 2是N型半导体,直接带隙能量分别为1.01和1.21 eV。提供了材料的光学特性,例如相对介电常数,传输和反射率。使用这些属性,使用1-D太阳能电池电容模拟器(SCAPS-1D)软件来设计基于单层纯和BR掺杂的Mote 2作为电子传输层(ETL)的太阳能电池。这些细胞的最大效率为13.121%,V OC为1.067 V和1.186 V,J SC的V OC为21.678 Ma/cm 2和25.251 MA/CM 2,而FF的FF为56.720%和56.720%和80.139%的FF,以及80.139%的纯度和80.139%的纯度和BR-pure and Br-doped Ets。我们的太阳能电池的性能与传统的基于SI的太阳能电池相媲美。结果显示了单层纯和掺杂的MOTE 2如何用作钙钛矿太阳能电池的合适ETL材料。
1阿拉伯联合酋长国扎耶德大学技术创新学院2号电气工程系,萨特国王大学,利雅得国王大学,沙特阿拉伯11451,沙特阿拉伯3 3号电子和通信工程系运输,开罗,开罗11799,埃及5沃尔夫森磁化中心,加定大学的加定大学工程学院,CF10 3AT CADCIFF,英国6,英国6号电子和通信工程系,阿拉伯科学,技术与海上交通学院,CAIRO 451913,CAIRO 451913,埃及7部埃及8高级工程技术学院,El-Tagmoe El-Khames,新开罗市11765,埃及
nöthnitzerstr。61,01187德累斯顿,德国2。莱布尼兹 - 固态和材料研究所研究德累斯顿,赫尔姆霍尔茨斯特拉斯20,
Bio/Ecoresbable Electronic Systems在可植入的医疗设备中创造了独特的机会,这些设备在有限的时间内满足需求,然后自然消失以消除对提取手术的需求。这类技术开发的一个关键挑战是,材料可以用作周围水或生物流体的薄壁垒,但最终完全溶于良性最终产品。本文描述了一类无机材料(硅硝酸盐,sion),可以通过血浆增强化学蒸气沉积在薄膜中形成。体外研究表明,sion及其溶解产物具有生物相容性,表明其在植入式设备中的使用潜力。一个简便的过程,用于制造薄弱的多层薄膜,绕过与无机薄膜的机械脆性相关的限制。系统的计算,分析和实验研究突出了基本材料方面。在体外和体内发出无线发光二极管中的演示说明了这些材料策略的实际使用。通过对化学成分和厚度的精细调整,可以选择降解速率和水渗透性的能力为获得一系列功能寿命以满足不同的应用程序要求。
操纵磁各向异性的能力对于磁传感和存储工具至关重要。表面碳物种是金属氧化物和高贵金属上限层的成本效益替代品,从而在超薄铁磁性磁性纤维中诱导垂直磁各向异性。在这里,在碳一氧化碳(CO),分散的碳和石墨烯的吸附后修饰了几层厚的CO薄膜中的磁性的不同机制。使用化学和磁灵敏度使用X射线显微镜,在表面碳的积累期间,监测了面向面向非平面自旋的重新定向转变,直至形成石墨烯。互补的磁光测量结果显示,在CO上分散的碳在室温下显示出弱垂直磁各向异性(PMA),而石墨烯覆盖的钴表现出显着的平面外胁迫型。密度功能理论(DFT)计算表明,从CO/CO到C/CO再到石墨烯/CO,磁晶和磁静脉各向异性的组合促进了平面外磁化。各向异性能量弱依赖于碳化物物种覆盖率。相反,碳化学状态从碳化物到石墨的演变伴随着由磁各向异性能量控制的特征域大小的指数增加。除了对碳 - 铁磁铁界面提供基本了解之外,本研究还提出了一种可持续的方法,可在超薄铁磁性磁铁中调整磁各向异性。
无定形的氧化物半导体晶体管已成为展示面板中的成熟技术,并且最近被认为是用于单片3D应用的有希望的后端兼容通道材料。然而,实现具有与传统晶体半导体相当的性能的高弹性无定形半导体材料一直是一个长期的问题。最近发现,通过原子层沉积(ALD)工艺实现的氧化im氧化物的厚度可以调整其材料特性以实现高迁移率,高驱动电流,高/o效比,并在同一时间超出了传统氧化物半导体材料的功能。在这项工作中,综述了这项工作的历史,导致氧化含量重新出现,其基本材料特性,侧重于ALD的生长技术,最先进的氧化辅助设备研究以及设备的偏置稳定性。
https://doi.org/10.26434/chemrxiv-2023-3btbw ORCID:https://orcid.org/0000-0002-5906-7205 内容未经ChemRxiv同行评审。许可证:CC BY-NC 4.0