微生物拥有高度进化的生存策略,这些策略已被用于解决药物输送问题。在肿瘤学中,“细菌作为药物”的概念可以利用化学疗法的直接细胞毒活性,同时还可以发展强大的治疗性抗癌免疫力。例如,溶瘤病毒 (OV) 可以选择性地感染和复制癌细胞,导致直接肿瘤细胞溶解以及诱导免疫原性细胞死亡 (ICD) 和抗肿瘤免疫。因此,OV 是一种新兴的癌症治疗方式,定位于生物疗法和免疫疗法的交界处。使用病毒的 OV 的应用,例如单纯疱疹病毒 (HSV)、水泡性口炎病毒 (VSV)、腺病毒 (Ad) 和安进的 T-VEC [1],这是 FDA 批准的第一个用于临床治疗黑色素瘤的 OV,
c. 纪律处分(包括美国军事学院学员条例下的纪律处分)包括针对受害者涉嫌附带不当行为而采取的官方记录的指挥行动,包括:谴责信或官方人事档案中的个人咨询书面记录、施加非司法惩罚、优先指控、启动非自愿行政分离程序或行政降职。6. 政策。a. 本政策适用于所有遭受性侵犯的军人,包括美国军事学院的学员,无论谁收到受害者的性侵犯报告,也无论调查和/或起诉是由军事或民事当局处理。b. 拥有特殊军事法庭召集权的 O-6 及以上级别的指挥官必须根据加重和减轻情节评估涉嫌附带不当行为。这些指挥官有权根据对加重和减轻情节的分析,最终确定涉嫌附带不当行为是轻微还是非轻微。指挥官将与负责其服务的军法官协商以做出这些决定。
摘要:线粒体疾病 (MD) 是一组严重的遗传性疾病,由参与氧化磷酸化 (OXPHOS) 系统的蛋白质的核或线粒体基因组突变引起。MD 的症状范围广泛,从器官特异性到多系统功能障碍,临床结果也各不相同。缺乏自然史信息、目前可用的临床前模型的局限性以及 MD 患者表现出的广泛表型都阻碍了有效疗法的开发。过去十年来,越来越多的临床前和临床试验表明,基因治疗是治疗 MD 的可行精准医疗选择。然而,必须克服几个障碍,包括载体设计、靶向组织趋向性和有效递送、转基因表达和免疫毒性。本文全面概述了 MD 基因治疗的最新进展,解决了主要挑战、最可行的解决方案以及该领域的未来前景。
调控和功能性遗传元件(例如启动子、增强子、限制性酶切位点、转基因和选择标记)的示意图。信息包括但不限于病毒衣壳的组成、包膜结构、分子量、颗粒大小、糖基化位点、基因组的性质(单链、双链、DNA 或 RNA、每个颗粒的基因组拷贝数)、病毒载体的趋向性(例如病毒载体对特定宿主组织的特异性)。• 对于质粒载体,提供调控和功能性遗传元件(例如启动子、增强子、限制性酶切位点、转基因和选择标记)的示意图。信息包括但不限于插入的外来基因的物理特性、生化、生长特性、遗传标记和位置(例如在质粒上、游离型或染色体上)。• 对于基因编辑技术的使用,提供
摘要:2019 年冠状病毒病 (COVID-19) 大流行的全球爆发暴露了医疗保健和公共卫生对流行病/大流行的准备和规划的脆弱性。除了治疗和免疫的医疗实践外,彻底了解社区传播现象也至关重要,因为相关研究报告称 17.9–30.8% 的确诊病例仍无症状。因此,有效的评估策略对于在短时间内最大限度地增加受检人群至关重要。本文提出了一种人工智能 (AI) 驱动的流行病/大流行移动评估代理动员策略。为此,使用从过去的移动众包感知 (MCS) 活动中获得的数据训练自组织特征图 (SOFM),以模拟城市多个地区的个人流动模式,从而在最短的时间内用最少的代理最大限度地增加评估人群。通过移动众包感知模拟器对真实街道地图的模拟结果,并考虑最坏情况分析,结果表明,在社区传播风险下,在城市出现第一例确诊病例后的第15天,通过AI驱动的评估中心动员,可以在评估代理随机部署到全城的情况下,将未评估人口规模减少到未评估人口的四分之一。
摘要:局部粘着激酶 (FAK) 是一种非受体酪氨酸激酶,在成人和儿童癌症中均过度表达和激活,在调节恶性表型的发病机制和进展中起着重要作用。FAK 通过两种不同的方式在癌症中发挥作用:一种是细胞质中的激酶活性,主要依赖于整合素信号传导,另一种是通过与不同的基因表达调节剂联网进入细胞核的支架活性。因此,FAK 必须被视为具有高治疗价值的靶点。事实上,有证据表明,FAK 靶向治疗可以有效,无论是单独治疗还是与其他已有治疗方法联合使用。在这里,我们概述了关于 FAK 结构和核功能的新见解,特别关注了有关这种蛋白质在癌症中的作用的最新发现。此外,我们还提供了目前正在对癌症患者进行临床试验的 FAK 抑制剂的最新更新,并讨论了基于药物的抗 FAK 靶向疗法的挑战和未来方向。
大多数关于非人类物种中脑部和行为侧向的大多数研究是针对成年人进行的,但是关于家雏鸡的横向化研究是一个例外。由于禽类胚胎在鸡蛋中发育,因此可以操纵它们的球架和既有后的既有既容易了,远比哺乳动物可以实现的感觉更容易。因此,小鸡(加勒斯·加鲁斯)已成为阐明遗传和表观遗传学对侧向大脑和行为发展的模型。类似的研究表观遗传影响对偏侧化发展的影响适用于其他禽类,尽管到目前为止,鸽子和鹌鹑是这方面研究的唯一其他鸟类(Quail,Casey and Sleigh,2014年; Harshaw等人; Harshaw等人。,2021; Pigeon,Güntürkün和Ocklenburg,2017年; Letzner等。,2017年)。实际上,诸如小鸡和鹌鹑之类的早熟鸟类具有非凡的属性,以帮助发展。在孵化之前和之后,它们都经过许多不同的阶段,每个阶段都非常分开,持续时间很短。这些阶段可以分别拦截和操纵,也可以按顺序截断,以揭示孵化后的行为结果,从而可以研究感觉体验对脑功能的影响。
1 奥莉维亚纽顿约翰癌症研究所肿瘤靶向项目,海德堡,维多利亚州 3084,澳大利亚;hengkang.yan@onjcri.org.au(HY);mary.vail@onjcri.org.au(MEV);nancy.guo@onjcri.org.au(NG);fsejlee@bigpond.net.au(F.-TL)2 拉筹伯大学癌症医学院,海德堡,维多利亚州 3084,澳大利亚 3 莫纳什生物医学发现研究所,莫纳什大学生物化学和分子生物学系,克莱顿,维多利亚州 3800,澳大利亚;linda.hii@monash.edu 4 卡布里尼莫纳什大学外科系,卡布里尼医院,马尔文,维多利亚州 3144,澳大利亚;pjm@colorectal.com.au(PJM);kaz@bigpond.net.au(KO); simonwilkins@cabrini.com.au (SW) 5 莫纳什大学流行病学和预防医学系,墨尔本,VIC 3004,澳大利亚 6 纪念斯隆凯特琳癌症中心结构生物学项目,纽约,NY 10065,美国;sahan@mskcc.org (NS);nikolovd@mskcc.org (DBN) * 通信地址:andrew.scott@onjcri.org.au (AMS);peter.janes@onjcri.org.au (PWJ)
摘要 人类与致命疾病的斗争自古以来就一直在持续。科学技术在对抗这些疾病方面的贡献不容忽视,这完全归功于新方法和产品的发明,它们的尺寸范围从微米扩展到纳米。最近,纳米技术因其诊断和治疗不同癌症的能力而受到越来越多的关注。不同的纳米粒子已被用于规避与保守的抗癌输送系统相关的问题,包括其非特异性、副作用和突发释放。这些纳米载体包括固体脂质纳米粒子 (SLN)、脂质体、纳米脂质载体 (NLC)、纳米胶束、纳米复合材料、聚合物和磁性纳米载体,它们带来了抗肿瘤药物输送的革命。纳米载体提高了抗癌药物的治疗效果,在特定部位更好地积累并持续释放,提高了生物利用度,并绕过正常细胞导致癌细胞凋亡。在这篇综述中,简要讨论了癌症靶向技术和纳米粒子的表面改性,以及可能面临的挑战和机遇。可以得出结论,了解纳米医学在肿瘤治疗中的作用具有重要意义,因此,该领域的现代进展对于肿瘤患者的繁荣今天和富裕未来至关重要。
由于可电离脂质纳米粒子 (LNP) 在全身给药后主要在肝脏中积累,因此其作为体内核酸递送平台的全部潜力尚未实现,这限制了它们在以肝脏为中心的条件下的成功。用抗体靶向部分对 LNP 进行工程设计可以通过促进位点特异性 LNP 束缚并通过受体介导的内吞作用驱动 LNP 优先吸收到受体表达细胞类型中来实现肝外趋向性。源于胎盘功能障碍的产科疾病,例如先兆子痫,其特征是细胞受体过度表达,包括表皮生长因子受体 (EGFR),这使得靶向 LNP 平台成为妊娠期间胎盘功能障碍的一种令人兴奋的潜在治疗策略。在此,通过对 LNP 进行工程设计,增加抗体功能化的密度,开发了一种 EGFR 抗体偶联的 LNP (aEGFR-LNP) 平台。在永生化胎盘滋养层细胞中体外筛选了 aEGFR- LNP,并在非妊娠和妊娠小鼠体内进行了筛选,并与非靶向配方进行了比较,以将抗体靶向的 mRNA LNP 递送至胎盘。与非靶向对应物相比,我们表现最佳的 LNP 具有中等密度的抗体功能化(1:5 aEGFR-LNP),可介导小鼠胎盘中 mRNA 递送量增加约两倍,EGFR 表达滋养层细胞中 LNP 摄取量增加约两倍。这些结果证明了抗体偶联 LNP 实现肝外向性的潜力,以及 aEGFR-LNP 促进 mRNA 递送至胎盘中 EGFR 表达细胞类型的能力。