近年来,人们对磁场对生物系统的影响的研究兴趣浓厚,尤其是与磁感应有关的研究——磁感应是生物体感知地球地磁场以进行导航的能力。目前,有三种公认的主要理论来解释这一有趣的现象。例如,一种假设认为,一些候鸟可能依靠喙中的微小磁性沉积物来定位。然而,由于缺乏确凿的证据,这一想法仍然是研究人员争论的话题。1 另一种有趣的理论认为,某些光敏蛋白(称为隐花色素)存在于选择性动物的眼睛中,可能充当地球磁场的化学探测器。这一想法近年来得到了广泛的关注,但与磁性沉积物假设一样,它也等待进一步的实验验证。磁感应的一个有趣的替代理论围绕磁趋化细菌 (MTB) 展开,这是一种沿着地磁场线定位的微生物。磁感应假说认为,这些与动物共生的细菌可能成为动物磁感应的潜在机制。”2,3 该理论提出,MTB 是长期存在的磁感应之谜的答案。
嵌合抗原受体 (CAR) 单核细胞和巨噬细胞疗法是有前途的实体瘤免疫疗法,可以克服传统 CAR T 细胞疗法面临的挑战。mRNA 脂质纳米颗粒 (mRNA-LNPs) 为原位改造具有瞬时和可调 CAR 表达的 CAR 单核细胞提供了可行的平台,以降低肿瘤外毒性并简化细胞制造。然而,使用传统的筛选技术很难识别具有单核细胞趋向性和细胞内递送能力的 LNPs。在这里,可电离脂质设计和高通量体内筛选被用于识别具有先天趋向性和向单核细胞递送 mRNA 的新型氧化 LNPs。合成氧化 (oLNPs) 和未氧化 LNPs (uLNPs) 库以评估向免疫细胞递送 mRNA。 oLNP 在形态、电离能和 p K a 方面表现出显著差异,从而增强了向人类巨噬细胞而非 T 细胞的递送。随后,使用 DNA 条形码进行体内文库筛选,确定了一种具有先天向性单核细胞的 oLNP 配方 C14-O2。在一项概念验证研究中,C14-O2 LNP 用于原位设计功能性 CD19-CAR 单核细胞,以治疗健康小鼠的严重 B 细胞发育不全 (45%)。这项工作突出了氧化 LNP 作为设计 CAR 巨噬细胞/单核细胞用于实体瘤 CAR 单核细胞治疗的有前途的平台的实用性。
缺乏 Zn 2+ 位点,IC 50 分别为 9.35 ± 0.18 µ M 和 0.67 ± 0.09 µ M。18 有趣的是,
恶性肿瘤的发病率和死亡率在世界范围内呈上升趋势,威胁着人类的生命和健康,并成为死亡的主要原因[1]。越来越多的证据表明,除了肿瘤细胞的侵袭性生物学行为外,肿瘤微环境(TME)在决定肿瘤进展中起着重要作用[2]。TME是由血管、免疫细胞、成纤维细胞、来自骨髓的炎症细胞、不同的信号化学物质和细胞外基质组成的,是围绕肿瘤部位的复杂微环境[3]。免疫抑制TME促进肿瘤细胞的增殖和转移[4]。巨噬细胞是TME中最丰富的免疫细胞,起着中枢调控作用。浸润TME的巨噬细胞被定义为肿瘤相关巨噬细胞(TAM),约占总免疫细胞数量的30%~50%[5]。 TAMs已被证实与肿瘤的发生、发展、血管生成和转移相关[ 6 ],提示TAMs可能是肿瘤的潜在治疗靶点和预后生物标志物。目前针对TAMs的抗肿瘤策略包括抑制巨噬细胞的募集、促进TAMs耗竭、调节其极化和增强TAM的吞噬作用。靶向TAMs已成为主要的抗肿瘤治疗策略之一。在本文中,我们试图讨论TAMs的起源、极化、作用和重编程,以及靶向TAMs在恶性肿瘤中的治疗意义。
摘要:癌症是继心血管疾病之后全球第二大死亡原因。分子和生物化学技术的发展扩大了人们对癌细胞特定代谢途径变化的认识。有氧糖酵解增加、补充反应促进,尤其是细胞对谷氨酰胺和脂肪酸代谢的依赖已成为研究课题。尽管有许多癌症治疗策略,但由于癌细胞对目前使用的治疗方法产生了耐药性,许多肿瘤患者无法完全治愈。现在,开发高效且副作用少的新治疗策略已成为当务之急。在这篇综述中,我们介绍了目前对糖酵解、克雷布斯循环和戊糖磷酸途径不同步骤中涉及的酶的了解,以及可能的靶向疗法。这篇综述还重点介绍了癌细胞和正常细胞在代谢表型方面的差异。对癌细胞代谢的认识在不断发展,需要进一步研究以开发新的抗癌治疗策略。
螺旋状植物具有向性,能够对自然刺激作出反应,将这种螺旋形状仿生到人造肌肉中已非常流行。然而,形状模仿的执行器仅对人工提供的刺激作出反应,它们不能适应变化的自然条件,因此不适合需要按需自主操作的实际应用。本文展示了由分层图案螺旋缠绕纱线制成的新型人造肌肉,这些纱线可自适应环境湿度和温度变化。与形状模仿的人造肌肉不同,采用了独特的微结构仿生方法,其中肌肉纱线可以使用类似植物的微结构记忆将螺旋植物的向水性和向热性有效地复制到其微纤维水平。当纱线的单个微丝嵌入水凝胶并进一步扭成线圈状的分层结构时,可以获得快速运动的大冲程。所开发的人工肌肉提供了约 5.2% s − 1 的平均驱动速度
摘要:癌症是继心血管疾病之后全球第二大死亡原因。分子和生物化学技术的发展扩大了人们对癌细胞特定代谢途径变化的认识。有氧糖酵解增加、补充反应促进,尤其是细胞对谷氨酰胺和脂肪酸代谢的依赖已成为研究课题。尽管有许多癌症治疗策略,但由于癌细胞对目前使用的治疗方法产生了耐药性,许多肿瘤患者无法完全治愈。现在,开发高效且副作用少的新治疗策略已成为当务之急。在这篇综述中,我们介绍了目前对糖酵解、克雷布斯循环和戊糖磷酸途径不同步骤中涉及的酶的了解,以及可能的靶向疗法。这篇综述还重点介绍了癌细胞和正常细胞在代谢表型方面的差异。对癌细胞代谢的认识在不断发展,需要进一步研究以开发新的抗癌治疗策略。
摘要:阿霉素是一种细胞毒性蒽环类衍生物,已被用于治疗多种不同类型的人类癌症,并取得了一定成功。然而,阿霉素治疗有几种副作用,其中最严重的是心肌病,这种副作用可能是致命的。聚乙二醇化脂质体 (Doxil ® ) 中的阿霉素封装已被证明可以增加肿瘤定位并降低心脏毒性。相反,这种脂质体的稳定性也会导致循环时间增加和皮肤蓄积,导致手掌红肿感觉异常,同时也限制了药物在肿瘤部位的释放。人们已经尝试使用各种受体特异性肽和抗体将这种脂质体特异性靶向肿瘤细胞。然而,针对单一表位会限制可能的肿瘤靶点数量,并增加通过突变产生肿瘤耐药性的风险。在本报告中,Doxil ® 与源自金属蛋白酶 3 组织抑制剂的肽序列 p700 偶联。与单独使用 Doxil ® 相比,这种 Doxil ® -P700 复合物可使小鼠和人类乳腺癌细胞以及永生化血管细胞的药物吸收量增加约 100 倍,从而导致细胞毒性增加。以这种方式使用 p700 靶向脂质体可能能够将阿霉素或其他药物特异性地递送到多种癌症中。
新血管的形成称为血管生成,是一种重要的病理生理过程,其中涉及多个调节器家族。其中,血管内皮生长因子 A (VEGFA;也称为 VEGF) 及其两个酪氨酸激酶受体 VEGFR1 和 VEGFR2 代表介导生理性血管生成的关键信号通路,也是主要的治疗靶点。VEGFA 是基因家族的成员,该家族包括 VEGFB、VEGFC、VEGFD 和胎盘生长因子 (PLGF)。在最初分离和克隆三十年后,VEGFA 可以说是血管生成中研究最广泛的信号系统。尽管已经确定了许多血管生成介质,包括 FGF 家族成员、血管生成素、TGFβ 和鞘氨醇 1-磷酸,但目前所有 FDA 批准的抗血管生成药物都以 VEGF 通路为目标。抗 VEGF 药物广泛用于肿瘤学,与化疗或免疫疗法联合使用,现已成为多种恶性肿瘤的标准治疗方法。抗 VEGF 药物还彻底改变了新生血管性眼病(如老年性黄斑变性和缺血性视网膜疾病)的治疗。在本综述中,我们强调了 VEGFA 作用的分子、结构和细胞基础,以及最近的发现,这些发现说明了与其他途径的意外相互作用,以及关于 VEGFA 在再生医学中的作用的令人振奋的报告。我们还讨论了 VEGFA 的临床和转化方面。鉴于 VEGFA 在调节健康和疾病中的血管生成方面发挥的关键作用,这种分子是本综述的主要重点。