Xponance 的指数策略建立在风险意识理念和量化投资流程的基础上,目标是以成本有效的方式和最小的跟踪误差尽可能接近地复制客户指定基准的回报。标准普尔 500 指数策略以完全复制的方式进行管理,其中投资组合中每只股票的权重与其在基准中的权重一致。该投资组合持有的现金为 0.25% 或更少。投资组合经理能够使用 ETF 来最大限度地减少投资组合中的非股票风险。该指数策略的投资组合采用完全复制构建,因此投资组合的跟踪误差最小,并且投资组合可以自我重新平衡,从而使周转率与基准保持一致,交易成本保持较低水平。在每个交易日中,都会将投资组合与基准进行比较和跟踪,以确保其尽可能接近地反映指数。基准变化或现金水平变化导致的交易会提前计划并以经济高效的方式执行。我们使用指数提供商的数据来构建和监控我们的投资组合。
摘要 - 滑模控制是一种鲁棒的非线性控制算法,已用于实现无人飞机系统的跟踪控制器,该控制器对建模不确定性和外部干扰具有鲁棒性,从而为自主操作提供出色的性能。无人飞机系统滑模控制应用的一个重大进步是采用无模型滑模控制算法,因为滑模控制实施中最复杂和最耗时的方面是结合系统模型推导控制律,这是每个单独的滑模控制应用都需要执行的过程。使用各种航空系统模型和真实世界干扰(例如离散化和状态估计的影响)在模拟中比较了各种无模型滑模控制算法的性能。结果表明,两种性能最佳的算法表现出非常相似的行为。这两种算法在四旋翼飞行器上实现(在模拟和使用真实硬件的情况下),并使用相同的状态估计算法和控制设置将其性能与传统的基于 PID 的控制器进行了比较。模拟结果表明,无模型滑模控制算法表现出与 PID 控制器相似的性能,而无需繁琐的调整过程。两种无模型滑模控制算法之间的比较表明,通过跟踪误差的二次均值测量,性能非常相似。飞行测试表明,虽然无模型滑模控制算法可以控制真实硬件,但在成为传统控制算法的可行替代方案之前,还需要进一步的特性描述和重大改进。无模型滑模控制和基于 PID 的飞行控制器都观察到了较大的跟踪误差,并且其性能对于大多数应用而言是不可接受的。两种控制器的性能不佳表明跟踪误差可以归因于状态估计中的误差。通过改进状态估计进行进一步测试将可以得出更多结论。关键词:无模型控制、滑模控制、鲁棒控制、飞行控制、无人机系统。1.简介
摘要 本文主要研究涵道风扇垂直起降 (VTOL) 无人机 (UAV) 的过渡控制。为了实现从悬停到高速飞行的稳定过渡,提出了一种基于神经网络的控制器来学习系统动态并补偿飞机动态和所需动态性能之间的跟踪误差。首先,我们推导了飞机全包络动力学的非线性系统模型。然后,我们提出了一种基于神经网络的新型控制方案并将其应用于欠驱动飞机系统。所提出的控制器的主要特征包括投影算子、状态预测器和动态形成的自适应输入。证明并保证在整个神经网络学习过程中,状态预测器和神经网络权重的跟踪误差都有上限。高度自适应的输入形成动态结构,有助于实现所提出的控制器可靠的快速收敛性能,尤其是在高频扰动条件下。从而使飞行器的闭环系统能够以期望的动态性能跟踪一定的轨迹,仿真和实飞试验均取得了满意的结果,完成了设计的飞行路线。
目前,有翼 eVTOL 无人机的控制方法主要将飞行器视为固定翼飞机,并在起飞和降落时增加垂直推力。这些方法提供了良好的远程飞行控制,但未能考虑飞行器跟踪复杂轨迹的完整动态。我们提出了一种轨迹跟踪控制器,用于有翼 eVTOL 无人机在悬停、固定翼和部分过渡飞行场景中的完整动态。我们表明,在低速到中速飞行中,可以使用各种俯仰角实现轨迹跟踪。在这些条件下,飞行器的俯仰是一个自由变量,我们使用它来最小化飞行器所需的推力,从而降低能耗。我们使用几何姿态控制器和空速相关控制分配方案,在各种空速、飞行路径角和攻角下操作飞行器。我们假设采用标准空气动力学模型,为所提出的控制方案的稳定性提供理论保证,并展示模拟结果,结果显示平均跟踪误差为 20 厘米,平均计算率为 800 Hz,与使用多旋翼控制器进行低速飞行相比,跟踪误差减少了 85%。
昆虫飞行控制研究主要集中在翅膀的作用上。然而,飞行过程中腹部的偏转可能会影响飞行动力学。本文评估了机身变形在飞行中的作用,并询问腹部对飞行机动性的贡献程度。为了解决这个问题,我们结合使用了模型预测控制 (MPC) 启发的计算惯性动力学模型和天蛾 Manduca sexta 的自由飞行实验。我们探索了欠驱动(即输出数量大于输入数量)和完全驱动(输出和输入数量相等)系统。使用无量纲跟踪误差和传输成本等指标来评估惯性动力学模型的飞行性能,我们表明完全驱动模拟可以最大限度地减少跟踪误差和传输成本。此外,我们通过在胸腹关节上固定碳纤维棒来测试限制腹部运动对活天蛾自由飞行的影响。腹部受限的飞蛾表现比假治疗飞蛾差。这项研究发现腹部运动有助于飞行控制和机动性。这种非气动结构运动存在于所有飞行类群中,可以为多驱动微型飞行器的开发提供参考。
昆虫飞行控制研究主要集中在翅膀的作用上。然而,飞行过程中腹部的偏转可能会影响飞行动力学。本文评估了机身变形在飞行中的作用,并探究腹部对飞行机动性的贡献程度。为了解决这个问题,我们结合使用了模型预测控制 (MPC) 启发的计算惯性动力学模型和天蛾 Manduca sexta 的自由飞行实验。我们探索了欠驱动(即输出数量大于输入数量)和完全驱动(输出和输入数量相等)系统。使用无量纲跟踪误差和传输成本等指标来评估惯性动力学模型的飞行性能,我们表明完全驱动模拟可以最大限度地减少跟踪误差和传输成本。此外,我们还通过在胸腹关节上固定一根碳纤维棒来测试限制腹部运动对活天蛾自由飞行的影响。腹部受限的蛾子表现比假治疗蛾子差。这项研究发现腹部运动有助于飞行控制和机动性。这种非气动结构的运动存在于所有飞行类群中,可以为多驱动微型飞行器的开发提供参考。
收到:2024年6月26日修订:2024年8月6日接受:2024年8月29日发布:2024年9月30日摘要 - 太阳能构成宇宙中的主要能源。可以采用各种方法来有效利用这种能量。太阳能电池板的部署被区别为一种广泛采用的创新方法,用于积累这种能量。与固定面板相比,旋转面板已经证明了在某些情况下(例如部分阴影条件)产生更大能量输出的能力。太阳能跟踪系统(STS)是跟踪太阳运动的主要方法之一。STS的目的是通过将载荷(通常是太阳能电池板)定向到太阳来优化能源产生。这是通过最大程度地减少传入的阳光与光伏(PV)面板之间的发射角来实现的,从而增强了产生的能量的量。现有的系统,具有最大功率点跟踪(MPPT)方法的灰狼优化(GWO),会产生大量的能量,从而导致重大跟踪误差。为了减少跟踪误差并提高能源效率,已经实施了使用粒子群优化(PSO)的最初提出的方法,该方法已实施。该神经网络(NN)主要由自适应神经模糊推理系统(ANFIS)组成,其中包括从数据收集到部署的工作流程。由于适当的培训,测试和数据实施,此方法比现有的结果更好。关键字 - ANN,PSO,太阳能系统,太阳能,部分阴影条件,光伏,优化。
目前,已提出了许多大机动目标跟踪算法[1~14],其中Singer模型[15~18]是常见的机动目标跟踪模型,适用于多种情况和各种类型的机动,但强机动会引起较大的跟踪误差,由于目标机动性的不确定性和模糊性较强,特定的模型参数很难适应目标的强机动变化。模糊推理方法[19,20]属于基于模糊集理论和模糊数学的模糊控制方法。自从1965年Zadeh提出模糊集的概念以来,模糊系统的研究得到了迅速发展,模糊控制技术在工业生产控制中得到了广泛的应用。为了适应复杂多变的运动模式,提高Singer模型在强机动跟踪情况下的性能,在
MSCI世界低碳负责人指数基于MSCI世界指数,其父母指数,并包括23个发达市场(DM)国家 /地区的大型和中型股票*。该指数解决了碳曝光的两个维度 - 碳排放和化石燃料储量 - 为客户提供有效的工具,以限制其投资组合暴露于碳风险。通过排除碳排放强度最高和最大碳储量所有者的每美元市值的公司,该指数旨在使其碳足迹的降低至少50%。该指数还旨在通过最大程度地减少相对于MSCI世界指数的跟踪误差来维持广泛而一致的市场敞口。MSCI全球低碳领导者索引使用MSCI Carbonmetrics数据来自MSCI ESG Research Inc.