摘要:本文提出了一种增量反步滑模(IBS)控制器,用于无尾飞机的轨迹控制,该控制器具有未知干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种限制虚拟控制输入速率和幅度的稳定性增强器(SE)。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,将激活第一层 SE 来修改轨迹跟踪误差;当虚拟控制输入超出边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。在 SE 的帮助下,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数自适应估计器,与 IBS 相结合,使控制器表现出良好的鲁棒性。最后,给出了两个仿真。第一次仿真表明系统对外部干扰和模型不确定性不敏感,第二次仿真证明了 SE 的有效性。
摘要 — 物理人机交互 (pHRI) 在机器人中起着重要作用。为了使人类操作员能够轻松适应与机器人的交互,应实现 pHRI 中的最小交互力。本文提出了一种 pHRI 框架,使机器人能够自适应地调节其轨迹,以最小化交互力和较小的位置跟踪误差。首先通过性能评估指数更新的交互力来调整机器人的轨迹。然后,基于自回归 (AR) 模型预测人手运动以进一步调整轨迹。第三,开发了一种自适应阻抗控制方法,使用表面肌电图 (sEMG) 信号更新机器人阻抗控制器中的刚度,以实现机器人与环境的顺从交互。该方法允许人类操作员通过交互力、手部运动和肌肉收缩与机器人交互。通过研究所提出方法的性能,交互力降低,并实现了良好的位置跟踪精度。对比实验证明了所提出方法的增强性能。
摘要。雷达是跟踪目标的常用手段,在敌方主动干扰下,常常会导致目标失去跟踪,从而造成雷达失去对目标的连续跟踪。为提高跟踪效果,建立了一种基于雷达光电联动控制的多传感器协同探测目标跟踪方法。研究以雷达光电联动、恒速度(CV)、恒加速度(CA)和电流统计模型(CSM)作为运动目标的数学模型,针对不同运动状态下的目标,以及单传感器电子支援措施(ESM)和多传感器电子支援措施(ESM)、红外搜索与跟踪(IRST),对比了改进的交互式多模型(IMM)和标准IMM。研究结果表明,在变速运动中,采用改进的IMM算法和多传感器进行目标跟踪,目标的方位角和仰角跟踪误差较小,可以有效解决CV、CA等运动模式转换过程中模型失配的问题。方位角和俯仰角图像曲线波动较小,稳定性较高,该方法可以取得较好的跟踪效果。
摘要:本文提出了一种增量反步滑模 (IBS) 控制器,用于无尾飞机的轨迹控制,该飞机具有未知的干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种稳定性增强器 (SE),它限制了虚拟控制输入的速率和幅度。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,第一层 SE 将被激活以修改轨迹跟踪误差;当虚拟控制输入超过边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。借助 SE,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数的自适应估计器,与 IBS 一起,使控制器表现出出色的鲁棒性。最后,给出了两个仿真结果。第一次仿真表明系统对外界干扰和模型不确定性不敏感,第二次仿真证明了SE的有效性。
摘要:在本文中提出了协作机器人系统的职位/力量控制有效载荷的问题。所提出的方法必须能够在参考轨迹上维护有效载荷的方向/位置,同时通过机器人的末端效应器将有限的力量应用于对象。考虑到这一点,已经提出了线性/非线性PID控制方案,以实现准确稳健的跟踪性能。Lyapunov的稳定性分析用于确认受控系统的稳定性。证明受控系统是稳定的,而对象的方向/位置跟踪误差最终在任何有限的状态空间区域中最终限制为边界(UUB)。它还提供了一些条件,以正确选择以两个定理的形式选择线性/非线性PID控制器的增益。建议的控制器适用于两个配备有效载荷的协调3DOF机器人臂。模拟结果测试了两种类型的轨迹,包括简单和复杂的路径。还将结果与最先进的近似值(Chebyshev神经网络(CNN))的结果进行了比较。
在本文中,我们提出了一种用于承载随机分布式能源 (DER) 和可控电池的径向配电网的重新调度方案。在每个重新调度轮次中,所提出的方案都会计算出一个新的调度计划,以修改和扩展现有的调度计划。为此,它使用 CoDistFlow 算法并应用滚动时域控制原理,同时考虑影响调度计划即时更新的硬时计算约束。CoDistFlow 通过基于场景的优化和交流最优功率流的非凸性来处理随机 DER 和产消者不确定性,通过迭代解决适当定义的凸问题直到收敛。我们根据从真实的瑞士电网获得的真实数据进行数值评估。我们表明,使用我们提出的重新调度方案,即使对于小容量的电池,每日调度跟踪误差也可以减少 80% 以上,并且如果重新调度足够频繁,则可以消除它。最后,我们表明,重新调度应在市场允许的范围内尽可能频繁地进行,并且性能会持续提高。
摘要:在机器人文献中,最佳跟踪问题通过使用各种鲁棒和自适应控制方法来解决。然而,这些方案与实施限制有关,例如在具有完整或部分基于模型的控制结构的不确定动态环境中的适用性、离散时间环境中的复杂性和完整性以及复杂耦合动态系统中的可扩展性。开发了一种在线自适应学习机制来解决上述限制,并为跟踪控制类问题提供通用解决方案平台。该方案使用同时线性反馈控制策略最小化跟踪误差并优化整体动态行为。采用基于值迭代过程的强化学习方法来求解底层贝尔曼最优方程。生成的控制策略以交互方式实时更新,而无需任何有关底层系统动态的信息。采用自适应评论家的方法来实时近似最佳求解值函数和相关控制策略。在模拟中说明了所提出的自适应跟踪机制在不确定的气动学习环境下控制柔性翼飞机的作用。
摘要 - 在自动机器人导航中,路径规划师的轨迹被认为是安全区域,并且偏向可能危害船只。模型预测控制(MPC)是轨迹跟踪问题的流行选择,因为它自然地解决了操作约束,例如动态和控制约束。尽管如此,在不断受到重大外部干扰的不断变化的环境中实现稳健性仍然是MPC的持续挑战。即使在模型不准确和扰动的情况下,它也必须将系统始终保持在预定义的安全区域(例如参考轨迹)。为了应对这一挑战,我们提出了利用控制屏障功能(CBF)的强大模型预测控制策略,从而提高了干扰反应能力。我们在模拟和自然水中的自主表面容器上验证我们的方法,均具有外部干扰。具体而言,与传统的MPC方法相比,我们提出的MPC-CBF策略在模拟和现场实验中分别将跟踪误差分别减少了17.82%和40.26%。al-尽管控制工作略有增加7.78%和4.20%,但这些结果清楚地表明了MPC-CBF对干扰的弹性增强。
摘要 - 越来越多地提出了用于减少运行同时本地化和映射(SLAM)算法的移动设备的资源消耗的解决方案,其中大多数边缘辅助的SLAM系统假设移动设备之间的通信资源和边缘服务器之间的通信资源是无限制的,或者依靠HEURISTIC,或者依靠Heursistical来选择Edge的信息来传输Edge de Edge to the Edge the Edge the Edge the Edge。本文介绍了Adaptslam,这是一种边缘辅助的视觉(V)和Visual惯性(VI)SLAM系统,该系统适应了可用的通信和计算措施,基于我们开发的理论基础,我们开发了用于在移动设备中构建最佳本地和全球映射的关键框架(代表性框架)的子集(代表性框架)的子集(代表性框架)。我们实施了Adaptslam,以与最先进的开源VI-SLAM ORB-SLAM3框架合作,并证明,在受限的网络带宽下,将跟踪误差降低了62%,与最佳的基线方法相比。索引项 - 中等定位和映射,边缘计算,不确定性定量和最小化
在本研究中,将深度确定性策略梯度 (DDPG) 算法(该算法由人工神经网络和强化学习组成)应用于垂直起飞和着陆 (VTOL) 系统模型以控制俯仰角。之所以选择该算法,是因为传统控制算法(例如比例-积分-微分 (PID) 控制器)无法始终生成合适的控制信号来消除干扰和不必要的环境对所考虑系统的影响。为了控制该系统,在 Simulink 环境中对 VTOL 系统数学模型中的正弦参考进行训练,通过深度强化学习方法中具有连续动作空间的 DDPG 算法,该算法可以产生控制动作值,这些动作值采用能够根据确定的奖励函数最大化奖励的结构,以实现控制目的和人工神经网络的泛化能力。对于正弦参考和恒定参考,将俯仰角(指定 VTOL 系统的输出)的跟踪误差性能与传统 PID 控制器在均方误差、积分平方误差、积分绝对误差、百分比超调和稳定时间方面的性能进行了比较。通过模拟研究给出了得到的结果。