另一种策略是使用时间分辨的NIR(TRNIRS)增强测量的深度灵敏度,该时间使用时间脉冲(TRNIRS),该nirs使用皮秒脉冲脉冲和快速检测器来记录扩散反射的光子的飞行时间(DTOF)分布。9作为DTOF包含时间和强度信息,由于光子到达时间与路径长度成正比,因此可以解决不同深度的吸收变化。最流行的深度增强方法是基于计算DTOF 10、11的统计矩或在时间Windows/门内集成光子计数的统计矩。12,13在这两种情况下,目标是将重点放在晚期的光子上,因为它们具有询问大脑的最大可能性。先前使用层状组织模拟幻像,动物模型和人类受试者的研究表明,与常规的CW NIR相比,TRNIRS对脑血动力学的敏感性具有较高的敏感性。13 - 17
图论是数学领域图论所涵盖的主题之一,图论是由节点(有时称为顶点)通过边连接的数学结构。图论提供了一种在神经科学领域研究大脑中错综复杂的神经元互连网络的方法。在大脑网络图中,神经元由节点表示,它们的连接由边表示。研究人员可以使用图论技术来表征大脑网络的拓扑结构,并通过将网络可视化为图形来精确定位连接模式。为什么在神经科学中使用图论?图论是研究大脑组成和运作的越来越重要的工具。大脑由一个复杂的互连神经元网络组成,图论提供了一种理解该网络的技术,将其可视化为一个图形,其中神经元充当节点,它们之间的连接充当边。神经科学家可以使用图论来测量大脑网络的度分布、聚类系数和路径长度。这些特征揭示了大脑如何传递和处理信息。例如,研究表明,人类大脑具有小世界网络特征,包括高度的局部聚类和短路径
本文从理论和实验两个方面研究了 C 4 + 与氢原子碰撞的电荷转移过程。我们的理论研究基于电子-核动力学方法,该方法用于研究态间和总电子捕获截面的贡献。我们的理论结果与 C 4 + 与氢原子碰撞的绝对总截面的实验测量结果相辅相成,该测量采用离子原子合并束技术,在橡树岭国家实验室的改进设备中以相对碰撞能量 0.122–2.756 keV/u 进行。我们发现,在实验结果中,在碰撞能量为 0.5 keV/u 附近观察到的结构是由于 3 ℓ 捕获截面、电子和核动力学的耦合以及实验配置中的接受角的综合贡献。我们还报告了 C 4 + 的动能损失和停止截面。我们发现,C 4 + 在相对碰撞能量介于 0.1 至 10 keV / u 之间时会获得能量,最大值为 ∼ 1 keV / u。我们的理论研究表明,要与合并光束实验结果进行比较,必须考虑合并路径长度对仪器的影响。
手性分子的准确检测,分类和分离是推进药物和生物分子创新的关键。设计的手性光提出了一种有希望的途径,以增强光与物质之间的相互作用,从而提供一种无创,高分辨率和具有成本效益的方法来区分对映异构体。在这里,我们提出了一个基于ACHIRAL等离子体系统的纳米结构平台,用于表面增强红外吸收吸收诱导的Vi-Brational圆形二色性(VCD)。该平台可以对对映体混合物的精确度量,分化和量化,包括浓度和对映体的多余确定。与常规的VCD光谱技术相比,我们的手性对映异构体的检测灵敏度高13个数量级的检测敏感性,这是相应的路径长度和浓度。该刺激性等离子体系统的可调光谱特性促进了多种手性化合物的检测。平台的简单性,可调节性和出色的灵敏度具有在药物设计,药物和生物应用中分类的巨大潜力。
重味夸克与粲夸克和美夸克一样,是研究高能重离子碰撞中产生的无色介质——夸克胶子等离子体 (QGP) 的灵敏探测器。ALICE 合作组在 √ s NN = 5.02 TeV 的 Pb-Pb 碰撞中测量了奇异和非奇异 D 介子的产生。对 D 介子的椭圆 (v2) 和三角 (v3) 流的测量可以深入了解粲夸克在低横向动量 (pT) 下参与介质集体运动的情况,同时限制了介质内能量损失的路径长度依赖性。此外,利用事件形状工程 (ESE) 技术对非奇异 D 介子椭圆流研究了粲夸克与底层介质中轻夸克的耦合。最后,通过首次测量 LHC 能量下 D0 电荷相关定向流与伪快速度的关系,研究了碰撞早期产生的磁场的影响。
摘要 模拟突触功能(例如增强和抑制)对于开发人工神经形态结构具有战略意义。通过在去除开关信号后利用电阻水平的逐渐放松,忆阻器可以定性地再现生物突触的短期可塑性行为。为此,已经提出了各种基于纳米制造的金属氧化物半导体堆栈的忆阻器。在这里,我们介绍了一种不同的制造方法,该方法基于以双层平面配置沉积的簇组装纳米结构氧化锆和金薄膜(ns-Au / ZrO x)。该装置表现出具有短期记忆和增强/抑制的忆阻行为。观察到的松弛可以用拉伸指数函数来描述。此外,在重复脉冲应用下,短期现象的特征时间会动态变化。我们的纳米结构装置的特点是与其他纳米级忆阻装置相比,导电路径长度明显更长;氧化锆纳米结构薄膜的使用使得该装置与神经元细胞培养兼容。
摘要 — 无人水面舰艇 (USV) 凭借其自主性优势被广泛应用于各个领域,而路径规划是实现自主性的关键技术。然而,单独使用全局路径规划无法避开移动障碍物,而单独使用局部路径规划可能陷入局部极小值而无法到达目标。因此,本文提出了动态目标人工势场 (DTAPF) 方法,以跟随 A* 算法生成的全局路径的动态点作为人工势场 (APF) 的目标点。此外,为了提高传统集中式路径规划方法的 USV 导航响应时间和安全性,我们提出了用于全局路径规划的边缘计算架构和偏移制导方法以避开移动障碍物并符合碰撞规则 (CORLEG)。实验结果表明,采用本文提出的方法,无人艇在存在移动障碍物的环境中能够以较高的概率(约99.4%)到达目标,与传统APF算法相比,在平均路径长度和平均航行时间几乎没有增加的情况下,碰撞概率降低了71%,且计算时延远低于本地计算,也低于云计算。
摘要 — 在电路设计领域,与传统的基于晶体管的逻辑相比,场耦合纳米技术 (FCN) 等新兴技术提供了独特的机会。然而,FCN 也带来了一个关键问题:线路交叉对电路稳健性的重大影响。这些交叉要么无法实现,要么会严重降低信号完整性,对高效电路设计造成重大障碍。为了应对这一挑战,我们提出了一种新方法,专注于减少 FCN 电路中的线路交叉。我们的方法引入了 LUT 映射和分解的组合,旨在在逻辑综合过程中产生有利的网络结构,以最大限度地减少线路交叉。这个新的优化指标优先于节点数和关键路径长度,以有效应对这一挑战。通过实证评估,我们证明了所提出方法的有效性,可将线路交叉的第一次近似值降低 41%。69%。这项研究为推进新兴电路技术中的线路交叉优化策略做出了重大贡献,为后 CMOS 逻辑时代更可靠、更高效的设计铺平了道路。
研究了湍流引起的亚音速、超音速和高超音速边界层的气动光学畸变特性。使用了四个边界层的直接数值模拟 (DNS) 数据,这些边界层的标称马赫数范围从 0.5 到 8。亚音速和超音速边界层的 DNS 数据是平板流。两个高超音速边界层均来自入口条件为 8 马赫的流动,其中一个是平板流,另一个是尖锥上的边界层。这些数据集中的密度场被转换为折射率场,这些折射率场沿预期的光束路径积分,以确定光束穿过湍流场的折射时将经历的有效光程长度。然后,通过考虑与体边界层效应相关的平均路径长度和倾斜问题,确定光程差 ( ) 的分布。将 的均方根与现有模型进行比较。发现从亚音速和超音速数据确定的 值与现有模型非常匹配。可以预料的是,由于在模型推导过程中做出了强雷诺类比等假设,高超音速数据匹配得并不好。到目前为止,该模型从未与本文中包含的马赫数如此之高的流动或流过尖锥几何的流动进行比较。
高精度温度测量正成为应用物理和基础物理等众多领域的横向需求。在大多数情况下,高精度与对高稳定环境的需求相伴而生,以确保实验的长期运行,例如系外行星探测仪器的情况 [1]。为了实现更高的稳定性,将这些实验转移到太空是一种自然的选择。事实上,越来越多的任务正在寻求在轨实验提供的稳定性,这是实现其科学目标的关键要求 [2-5]。在太空任务中,LISA 等引力波探测器 [6] 代表了温度传感中一个特别具有挑战性的领域,主要原因是这些天文台的设计目标是在毫赫兹频率范围内实现最高灵敏度。在这些超稳定操作状态下,温度波动会通过各种现象干扰科学测量,包括直接施加到测试质量上的热感应力和干涉仪中温度引起的路径长度变化 [ 7 – 10 ]。近年来,人们对开发能够实现高温度分辨率的新技术的兴趣日益浓厚。光学计量实验已证明温度精度为 80 nK / √