介绍了改进飞机识别和轨迹预测方法的技术。这项工作是对高级跟踪器的扩展,它使用平移和姿态数据来提高轨迹跟踪和预测的准确性。这项工作中的新扩展涉及基于曲率半径估计器的新跟踪算法的开发、在预测间隔期间使用基于回归的人工测量以及基于远程轨迹测量的被跟踪车辆的飞机识别技术的开发。该程序使用在训练飞行中获得的 F-14A、AV-8B 和 A6 飞机的实际位置和姿态轨迹数据进行评估。
摘要 - 本文研究DDPG算法在轨迹跟踪任务中的应用,并提出了一种与FRENET坐标系相结合的轨迹跟踪控制方法。通过将车辆的位置和速度信息从笛卡尔坐标系转换为FRENET坐标系,该方法可以更准确地描述车辆的偏差和旅行距离,相对于道路的中心线。DDPG算法采用了参与者 - 批评框架,使用深层神经网络进行策略和价值评估,并将体验重播机制和目标网络结合在一起,以提高算法的稳定性和数据利用效率。实验结果表明,基于FRENET坐标系的DDPG算法在复杂环境中的轨迹跟踪任务中表现良好,可实现高精度和稳定的路径跟踪,并证明其在自主驾驶和智能运输系统中的应用潜力。
[1] L. Derafa、L. Fridman、A. Benallegue 和 A. Ouldali,“四旋翼直升机姿态跟踪问题的超扭转控制算法”,载于《可变结构系统 (VSS)》,2010 年第 11 届国际研讨会,2010 年,第 62-67 页。[在线]。可访问:http://ieeexplore.ieee.org /stamp/stamp.jsp?arnumber=5544726 [2] A. Rabhi、M. Chadli 和 C. Pegard,“四旋翼飞行器的鲁棒模糊控制稳定”,载于《先进机器人技术 (ICAR)》,2011 年第 15 届国际会议,2011 年,第471-475 页。[在线]。可访问:http://ieeexplore .ieee.org =6088629 / stamp/ stamp。JSP?ar 编号 [3] H. Khebbache、B. Sait、F. Yacef 和 Y. Soukkou,“在执行器故障情况下对四旋翼飞行器进行稳健稳定”,《国际信息技术、控制和自动化杂志》,第 2 卷,第 2 期。2,2012 年,第 1-13 页。[4] P. Johan From、J. Tommy Gravdahl、K. Ytterstad Pettersen,《车辆操纵器系统》,Verlag,伦敦:Springler,2014 年。[5] Atheer L. Salih、M. Moghavvemi、Haider A. F. Mohamed、Khalaf Sallom Gaeid,《四旋翼无人机的建模和 PID 控制器设计》,IEEE,2010 年。[6] D. Lee、H. Jin Kim 和 S. Sastry,“四旋翼直升机的反馈线性化与自适应滑模控制”,《国际控制自动化与系统杂志》,第 3 卷,第 1 期。7,页。页。419-428,2009 年。[7] O. Gherouat、D. Matouk、A. Hassam 和 F. Abdessemed,“四旋翼无人机的建模和滑模控制”,J.自动化与系统工程,卷。10,号。3,页。150-157,2016 年。[8] Abraham Villanueva、B. Castillo-Toledo 和 Eduardo Bayro-Corrochano,“四旋翼多模式飞行滑模控制系统”,2015 年国际无人机系统会议 (ICUAS),美国科罗拉多州丹佛市,2015 年 6 月。[9] 易奎、顾锋、杨丽英、何玉清、韩建达,“四旋翼吊挂系统滑模控制”,第 36 届中国控制会议论文集,中国大连,2017 年 7 月 26-28 日。[10] A. Benallegue、A. Mokhtari 和 L. Fridman, “四旋翼无人机的反馈线性化和高阶滑模观测器”,《VariableStructure Systems》,2006 年。VSS’06。国际研讨会,2006 年,第365–372。5887–[在线]。可访问:http://ieee xplore.ieee.org/stamp/stamp.jsp?arnumber=1644545 [11] T. Madani 和 A. Benallegue,“四旋翼无人机的滑模观测器和反步控制”,美国控制会议,2007 年。ACC ’07,2007 年,第
摘要在这项工作中提出了一种强大的无模型自适应迭代学习控制(R-MFAILC)算法,以解决横向控制自动驾驶总线的问题。首先,根据自主总线的周期重复工作特性,利用了迭代域中使用的一种新型的动态线性化方法,并给出了具有伪梯度(PG)的时变数据模型。然后,R-MFAILC控制器的设计具有建议的自适应衰减因子。所提出的算法的优势在于R-MFAILC控制器,该控制器仅利用了调节实体的输入和输出数据。此外,R-MFAILC控制器具有很强的鲁棒性,并且可以处理系统的非线性测量干扰。在基于卡车SIM模拟平台的模拟中,验证了所提出的算法的有效性。使用严格的数学分析来证明所提出算法的稳定性和收敛性。
摘要:随着当今社会的快速发展,交通环境变得越来越复杂。作为智能车辆的重要组成部分,轨迹跟踪因其稳定性和安全性引起了极大的关注。在高速工作等极端工作条件下,准确性和不稳定性很容易发生。在本文中,为分布式驱动车辆提出了一种轨迹跟踪控制策略,以确保在高速和低固定限制条件下进行横向稳定性。模型预测控制器(MPC)用于控制前轮角度,并且设计了粒子群优化(PSO)算法以适应MPC控制参数。滑动模式控制器控制后轮角度,并且通过分析β-来判断车辆不稳定性度。β相平面。在本文中设计了不同不稳定性度的控制器。最后,扭矩分隔器的设计目的是考虑驱动防滑。设计的控制器通过CARSIM和MATLAB-SIMULINK共模拟验证。结果表明,本文设计的轨迹跟踪控制器有效地提高了在确保稳定性的前提下的跟踪精度。
本文提出了一种用于柔性飞机同时进行轨迹跟踪和载荷减轻的非线性控制结构。通过利用控制冗余,在不降低刚体指令跟踪性能的情况下减轻了阵风和机动载荷。所提出的控制结构包含四个级联控制环路:位置控制、飞行路径控制、姿态控制和最优多目标机翼控制。由于位置运动学不受模型不确定性的影响,因此采用非线性动态逆控制。相反,飞行路径动力学受到模型不确定性和大气扰动的干扰;因此采用增量滑模控制。基于 Lyapunov 的分析表明,该方法可以同时降低模型依赖性和传统滑模控制方法的最小可能增益。此外,姿态动力学为严格反馈形式,因此采用增量反步滑模控制。此外,设计了一种新型负载参考生成器,以区分执行机动所需的负载和过载负载。负载参考由内环最优机翼控制器实现,而过载负载由襟翼自然化,而不会影响外环跟踪性能。通过空间冯·卡门湍流场中的轨迹跟踪任务和阵风负载缓解任务验证了所提出的控制架构的优点。
本文提出了一种用于柔性飞机同时进行轨迹跟踪和负载减轻的非线性控制架构。通过利用控制冗余,可以在不降低刚体指令跟踪性能的情况下减轻阵风和机动负载。所提出的控制架构包含四个级联控制环路:位置控制、飞行路径控制、姿态控制和最优多目标机翼控制。由于位置运动学不受模型不确定性的影响,因此采用非线性动态逆控制。相反,飞行路径动力学受到模型不确定性和大气扰动的干扰;因此采用增量滑模控制。基于 Lyapunov 的分析表明,该方法可以同时降低传统滑模控制方法的模型依赖性和最小可能增益。此外,姿态动力学为严格反馈形式;因此采用增量反步滑模控制。此外,还设计了一种新型负载参考生成器,用于区分执行机动所需的负载和过载负载。负载参考由内环最优机翼控制器实现,而过载负载由襟翼自然化,而不会影响外环跟踪性能。通过空间轨迹跟踪任务和阵风负载缓解任务验证了所提出的控制架构的优点
摘要:本文介绍了微型自主四旋翼直升机系统 (X4 原型) 的轨迹跟踪控制的开发和实验验证,该系统使用基于二阶滑模技术的稳健算法控制,也称为户外环境中的超扭转算法。这种非线性控制策略保证在存在外部干扰或模型不确定性影响我们的四旋翼直升机的适当行为的情况下,在有限时间内收敛到所需路径 r (t)。为此,选择多项式平滑曲线轨迹作为参考信号,其中函数的相应导数是有界的。此外,我们考虑了作用于飞行器的阵风干扰,并在先进的自动驾驶系统中预先编程了参考信号。提出的解决方案包括使用 GPS 测量实施基于超扭转控制的实时控制律,以获得 xy 平面中的位置以实现所需的轨迹。给出了轨迹跟踪控制的仿真和实验结果,以证明所提出的非线性控制器在有风条件下的性能和鲁棒性。
摘要:针对共轴旋翼飞行器自主飞行过程中模型参数的不确定性、外界扰动及传感器噪声对飞行的影响,研究位置姿态反馈控制系统的鲁棒反步滑模控制算法,以解决未知外界干扰情况下飞行器的轨迹跟踪问题。本文针对未知飞行,建立了基于受扰共轴旋翼飞行器的非线性动力学模型。然后,设计了非线性鲁棒反步滑模控制器,分为共轴旋翼飞行器的姿态控制器和位置控制器两个子控制器。在控制器中引入虚拟控制,构造Lyapunov函数,保证各子系统的稳定性。通过数值仿真验证了所提控制器的有效性。最后通过飞行试验验证了反步滑模控制算法的有效性。