Loading...
机构名称:
¥ 1.0

摘要 - 本文研究DDPG算法在轨迹跟踪任务中的应用,并提出了一种与FRENET坐标系相结合的轨迹跟踪控制方法。通过将车辆的位置和速度信息从笛卡尔坐标系转换为FRENET坐标系,该方法可以更准确地描述车辆的偏差和旅行距离,相对于道路的中心线。DDPG算法采用了参与者 - 批评框架,使用深层神经网络进行策略和价值评估,并将体验重播机制和目标网络结合在一起,以提高算法的稳定性和数据利用效率。实验结果表明,基于FRENET坐标系的DDPG算法在复杂环境中的轨迹跟踪任务中表现良好,可实现高精度和稳定的路径跟踪,并证明其在自主驾驶和智能运输系统中的应用潜力。

使用frenet坐标的轨迹跟踪与深...

使用frenet坐标的轨迹跟踪与深...PDF文件第1页

使用frenet坐标的轨迹跟踪与深...PDF文件第2页

使用frenet坐标的轨迹跟踪与深...PDF文件第3页

使用frenet坐标的轨迹跟踪与深...PDF文件第4页

相关文件推荐

2024 年
¥1.0
2024 年
¥8.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥2.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥5.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0