如何自主规划出协同运动轨迹并及时准确地控制舰载机的运动是提升整体甲板作业效率的关键。本文主要讨论的问题是多舰载机协调轨迹规划策略及牵引机与舰载机的协同控制。首先,建立无拖杆牵引系统运动学模型和三自由度动力学模型;其次,提出一种飞机系统协同进化机制以确保多飞机协调轨迹规划并基于混合RRT∗算法生成适应于牵引机系统的轨迹;其次,在不完全约束和各种物理条件约束下,设计双层闭环控制器实现甲板上牵引机系统的轨迹跟踪。外层模型预测控制器有效控制载机与牵引车的协同运动,内层基于自适应模糊PID控制的力矩控制策略严格保证系统的稳定性。仿真结果表明,与反步控制和LQR算法相比,该控制器具有更快、更精确的控制速度,对有初始偏差的直线轨迹、大曲率正弦曲线、甲板上的复杂轨迹具有更强的鲁棒性。
这两个问题都可以通过使用基于 PID 控制器的经典控制系统方法来解决 [8-13]。然而,开发多维 PID 控制器很困难,因为它们没有理论背景。因此,这种综合有点直观,取决于经验法则,需要控制系统工程师的丰富经验。另一种可能性是使用反步或滑模控制。在 [14] 中,终端滑模和反步控制已成功应用于实时无人机。在 [15] 中,基于线性反馈表示的鲁棒控制器可减少动态不确定性和外部干扰,并设计应用于实时欠驱动系统。现代控制技术,尤其是最优控制理论,为开发高效、鲁棒的多维控制器提供了可能性 [16-20]。它们非常适合处理非常一般类型的跟踪问题。在 [21] 中,瞬时最优控制用于输入饱和的机器人轨迹跟踪。 [ 22 ] 提出了基于辛伪谱最优控制的三维欠驱动板条箱跟踪方法。[ 23 ] 证明了最优周期
这两个问题都可以通过使用基于 PID 控制器的经典控制系统方法来解决 [8-13]。然而,开发多维 PID 控制器很困难,因为它们没有理论背景。因此,这种综合有点直观,取决于经验法则,需要控制系统工程师的丰富经验。另一种可能性是使用反步或滑模控制。在 [14] 中,终端滑模和反步控制已成功应用于实时无人机。在 [15] 中,基于线性反馈表示的鲁棒控制器可减少动态不确定性和外部干扰,并设计应用于实时欠驱动系统。现代控制技术,尤其是最优控制理论,为开发高效、鲁棒的多维控制器提供了可能性 [16-20]。它们非常适合处理非常一般类型的跟踪问题。在 [21] 中,瞬时最优控制用于输入饱和的机器人轨迹跟踪。 [22] 中介绍了采用辛伪谱最优控制的三维欠驱动板条箱跟踪。在 [23] 中,表明最优周期
摘要 - 在自动机器人导航中,路径规划师的轨迹被认为是安全区域,并且偏向可能危害船只。模型预测控制(MPC)是轨迹跟踪问题的流行选择,因为它自然地解决了操作约束,例如动态和控制约束。尽管如此,在不断受到重大外部干扰的不断变化的环境中实现稳健性仍然是MPC的持续挑战。即使在模型不准确和扰动的情况下,它也必须将系统始终保持在预定义的安全区域(例如参考轨迹)。为了应对这一挑战,我们提出了利用控制屏障功能(CBF)的强大模型预测控制策略,从而提高了干扰反应能力。我们在模拟和自然水中的自主表面容器上验证我们的方法,均具有外部干扰。具体而言,与传统的MPC方法相比,我们提出的MPC-CBF策略在模拟和现场实验中分别将跟踪误差分别减少了17.82%和40.26%。al-尽管控制工作略有增加7.78%和4.20%,但这些结果清楚地表明了MPC-CBF对干扰的弹性增强。
摘要 —本文介绍了一个分析框架,用于研究在云到物连续体中虚拟控制器放置的最佳设计选择。主要应用场景包括低延迟信息物理系统,其中需要实时控制操作来响应物联网 (IoT) 节点状态的变化。在这种情况下,由于从网络边缘到云的延迟,在云服务器上部署控制器软件通常是无法容忍的。因此,最好通过将控制器逻辑移近网络边缘来牺牲可靠性和延迟。将物联网节点建模为随时间线性发展的动态系统,对状态偏差采用二次惩罚,通过考虑虚拟雾控制器的可靠性和响应时间延迟,获得最佳控制策略的递归表达式和由此产生的最小成本值。我们的结果表明,在雾端点上配置虚拟化控制服务时,延迟比可靠性更为关键,因为它决定了雾控制系统的敏捷性以及状态测量的及时性。基于无人机轨迹跟踪模型,还进行了广泛的模拟研究,以说明可靠性和延迟对雾中自动驾驶汽车控制的影响。
垂直起降(VTOL)是无人机(UAV)的基本功能。VTOL一方面可以拓展和增强无人机的应用领域,但另一方面也使得无人机控制系统的设计更加复杂。控制系统设计中最具挑战性的需求是实现固定翼无人机对控制指令满意的响应敏锐度以及确保飞机模态通道有效解耦。本文在气动分析的基础上,建立了含有力和力矩的六自由度(6-DoF)模型,并通过计算流体力学(CFD)数值模拟进行气动分析。提出一种基于扩张状态观测器(ESO)的改进比例微分(PD)控制器来设计内环姿态控制,增强了无人机系统对内外部不确定性的抗干扰能力。建立无人机运动方程,将运动方程分解为纵向和横侧两个独立运动分量,设计小扰动条件下的外环控制律;提出一种纵向高度通道总能量控制系统(TECS),将速度控制与航迹控制分离;横侧轨迹跟踪采用L1非线性路径跟踪制导算法,提高曲线跟踪能力和抗风能力。实飞实验数据证明了该方法的有效性。最后,设计了一种控制律。
本文提出了一种用于空中操纵器的控制方案,该方案允许解决不同的运动问题:最终效应器位置控制,最终效应器轨迹跟踪控制和路径遵循控制。该方案具有两个级联的控制器:i)第一个控制器是基于数值方法的最小范数控制器,它仅通过修改控制器引用就可以解决三个运动控制问题。另外,由于空中操纵器机器人是一个冗余系统,即,完成任务具有额外的自由度,可以按层次顺序设置其他控制目标。作为控制的次要目标,提议在任务过程中维持机器人臂的所需配置。ii)第二个级联控制器旨在补偿系统的动力学,其中主要目的是将速度误差驱动到零。提出了机器人系统的耦合动态模型(己谐和机器人臂)。该模型通常是根据力和扭矩的函数开发的。但是,在这项工作中,它是参考速度的函数,这些速度通常是这些车辆的参考。通过相应的稳定性和鲁棒性分析给出了提出的对照算法。最后,为了验证控制方案,在部分结构化的环境中进行实验测试,其空中操纵器与空中平台和3DOF机器人臂相符。
2曲率调查的变分自动编码器17 2.1学习小型演示数据集的潜在表示17 2.2有关小型轨迹数据集的学习表示的相关工作。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.2.1轨迹表示。。。。。。。。。。。。。。。。。。。19 2.2.2曲率正则化。。。。。。。。。。。。。。。。。。。20 2.3曲率调查的VAE。。。。。。。。。。。。。。。。。。。。。。20 2.3.1曲率调查的VAE公式。。。。。。。。。。20 2.3.2 fork姿势示例。。。。。。。。。。。。。。22 2.4曲线机器学习方法。。。。。。。。。。。。。。。。24 2.4.1人示出的轨迹和数据处理。24 2.4.2轨迹的神经网络体系结构。。。。。。。。26 26 2.4.3训练超标剂。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 27 27 2.4.4模型可解释性。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 28 2.5曲线物理机器人实验。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。26 26 2.4.3训练超标剂。。。。。。。。。。。。。。。。。。27 27 2.4.4模型可解释性。。。。。。。。。。。。。。。。。。。。。28 2.5曲线物理机器人实验。。。。。。。。。。。。。。。。29 2.5.1机器人臂。。。。。。。。。。。。。。。。。。。。。。。。。29 2.5.2轨迹跟踪实现。。。。。。。。。。。。30 2.5.3曲线潜在值选择。。。。。。。。。。。。。。。30 2.5.4基线轨迹。。。。。。。。。。。。。。。。。。。。。。31 2.5.5数据收集。。。。。。。。。。。。。。。。。。。。。。。。。31 2.6关于小型传统数据集的学习表示形式的结果和讨论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32
为了储存夏季剩余的电能供应并满足冬季的供热需求,需要一个高容量的季节性储能系统。这项工作的目的是将一种新型热化学季节性储能概念控制集成到建筑能源系统中。在这项工作中,开发了一个基于状态的模型,包括建筑物、水缓冲区和供热系统。为了阐述长期储存的影响,应用了长期天气预报并改变了供热。由于公共天气预报在几天的时间范围内是可靠的,因此使用测试参考年数据来近似公共预报期以外的天气预报。在此基础上,设计了两个模型预测控制 (MPC) 概念,以便在一年内高效运行该系统。层次结构由上级最佳发电调度 (OGS) 和下级 MPC 组成。这些概念遵循预定的长期石灰储存轨迹,并根据当前公共预测实现可能的短期收益。轨迹跟踪在目标函数或约束中制定。将新型石灰储存模块集成到建筑物的供热系统中,在现实情况下可将运营成本降低 18%,在电价波动较大的情况下,最高可降低 80%。这种降低潜力可以通过开发的控制方法充分利用,但它对控制器参数的变化、电价波动和天气数据非常敏感。此外,通过应用最佳的控制方法和参数集,可以避免更高级别的调度层次结构。
机载风能系统 (AWES) 使用系留飞机或风筝来利用高空风能。持续可靠的运行要求 AWES 成为自主设备,但风的间歇性迫使系统反复起飞启动,降落关闭。因此,促进运行的一种常见方法是实现垂直起降 (VTOL) 功能。本论文对 AWES 飞行进行建模和模拟,旨在实现飞行控制器硬件和 AWES 演示平台的自主运行。Ardupilot 开源自动驾驶仪平台为小型飞机的建模、模拟和硬件实现提供了一种方便的工具。开发了 AWES 实验室规模的演示器,以获得操作见解、初步飞行数据和该技术的实际经验。通过将结构增强的滑翔机与 VTOL 和自动驾驶仪组件相结合,开发了四翼飞机。其性能是通过静态和空气动力学研究获得的,并转换为 Ardupilot 参数格式以在模拟中定义它。从头开始开发了一个 AWES 飞行模型,以评估简单飞行控制器在轨迹跟踪中的性能。Ardupilot 软件在环 (SIL) 工具通过运行飞行控制器代码扩展了模拟功能,而无需任何硬件。这允许使用更先进的
