转座元素(TES)是DNA序列,可以围绕基因组移动,并在塑造地球生命的演变中发挥了重要作用。它们几乎在从细菌到人类的几乎所有生物中都发现。tes构成了人类基因组的一半,使其成为遗传变异和多样性的重要贡献(Lander等,2001; de Koning等,2011)。TE分为两个主要类别:DNA转座子和逆转录座子。dna transpo-sons通过“切割和剪切”的机械主义在基因组中移动,从一个位置切除TE并在新位置重新插入。另一方面,retransposon使用“拷贝和贴”机制,首先将TE转录为RNA,然后将其反向转录为DNA,然后将其插入基因组的新位置(Bourque等,2018)。可以引起可能为寄主生物提供优势或缺点的突变(Payer and Burns,2019; Senft and Macfarlan,2021)。虽然某些TE插入可能会破坏基因,从而导致功能丧失(付款人
关于 Poseida Therapeutics Poseida Therapeutics 是一家临床阶段的生物制药公司,致力于开发具有治愈能力的差异化同种异体细胞疗法和基因药物。Poseida 的产品线包括用于治疗血液系统癌症、自身免疫性疾病和实体瘤的在研同种异体 CAR-T 细胞疗法,以及针对高度未满足医疗需求的患者群体的在研体内基因药物。Poseida 的方法基于其专有的基因编辑平台,包括其基于非病毒转座子的 DNA 递送系统、Cas-CLOVER™ 位点特异性基因编辑系统增强分子和纳米颗粒基因递送技术,以及内部 GMP 细胞疗法制造。 关于罗氏 罗氏成立于 1896 年,总部位于瑞士巴塞尔,是首批品牌药物工业制造商之一,现已发展成为全球最大的生物技术公司和全球
PAT 逆转录转座因子与其他逆转录因子的不同之处在于它们具有“分裂直接重复”结构,即发现内部 300bp 序列重复,每个因子末端约有一半重复。在带有 Northern 印迹的 Panagrellus redivivus 总 RNA 上检测到约 900nt 的非常丰富的转录本,其起始部分映射到 PAT 因子的优先删除部分。潜在对应的 ORF 编码具有羧基末端半胱氨酸基序的 265 个残基的蛋白质,据信这是逆转录因子中 GAG 蛋白的唯一特征。在 Northern 印迹上还检测到一个更暗淡的 1800nt 长的转录本,它位于第一个 ORF 的稍下游。该区域的预测蛋白质序列带有逆转录酶和 RNaseH 的典型基序,如在逆转录因子的 Pol 基因中发现的。肽基序与来自盘基网柄菌的DIRS-1元件最为相似。讨论了使用PAT元件作为秀丽隐杆线虫转座子标记系统的可能性。
与人相关的环境,包括食物和临床环境,以非典型和具有挑战性的条件为需要适应的微生物。最近已经描述了一些与自适应性状相关的新型水平获得的遗传物质病例,其中包含在名为Starships的巨型转座子中。尽管最近在驯养物种中发现了几家飞船,但它们对与人类相关真菌进化的影响程度仍然未知。在这里,我们调查了星舰是否塑造了在食物和临床环境中发生的两个主要真菌属的基因组,即曲霉和青霉。使用七个独立的驯化事件,我们在所有情况下都发现,与非人类相关环境的近亲相比,驯化的菌株或物种表现出明显更高的星际飞船含量。我们在临床环境中发现了类似的模式。我们的发现对农业,人类健康和食品行业具有明显的影响,因为我们将星际飞船视为基因转移的一种经常反复的机制,可以帮助真菌快速适应新的环境。
Chang 等,2012;Fazili 等,2016;Rossi 等,2018)。研究表明,赋予 hvKp 高毒力表型的最典型的毒力因子由位于毒力质粒上的基因编码,其中包括 iuc/iro(铁载体 aerobactin/salmochelin 的生物合成基因)、rmpA/rmpA2(增加荚膜产量的调节剂)和 peg-344(功能未知的代谢转运蛋白)(Russo and Marr,2019)。因此,大型毒力质粒上毒力基因的丢失将显著降低 hvKp 的毒力。尽管对hvKp毒力机制的研究已经取得了很大进展,但仍有许多问题尚未揭示:例如,毒力基因之间如何相互作用,它们如何调控hvKp的高毒力表型,以及毒力因子如何与宿主免疫系统相互作用。针对hvKp毒力质粒的有效基因编辑方法对于理解这些未知机制至关重要。目前,对hvKp毒力质粒进行基因敲除的报道很少,主要依赖于随机转座子插入和自杀质粒介导的同源重组(Cheng等,2010;
细菌中的性过程:转化,转导和缀合基因转移:现象机制和应用。重组:模型,机制和控制。基因作为表达单位。基因和聚 - 肽的结合性。阐明遗传密码,摇摆假设。基因表达的调节。额外的染色体遗传:发现质粒的生物学,F,RTF,Col-Factor和Ti质粒的类型和结构,复制和分配。不兼容和拷贝数控制,自然和人造质粒转移及其应用。可转座的遗传元件 - 转置的鉴定 - 是元素,复合座盆,TN3,TN5,TN9,TN9,TN10和MU噬菌体。换位机理。真核生物中的可替代元素:玉米 - AC&DS,SPM&DSPM,果蝇 - P元素。复古转座子。真核生物的遗传学:基因链接和染色体映射。交叉 - 有点交叉,四分法分析。染色体的组织,专门的染色体,染色体异常,定量遗传,种群遗传学。使用果蝇作为模型系统的遗传学发展。
理解染色质功能对于不清除欧洲核心中基因组调节的复杂性至关重要。染色质的基本亚基是Nu-Cleosome,它是由包裹在八个组蛋白蛋白的DNA形成的。Berger组的研究重点是研究组蛋白变体和重塑剂的进化论和功能,这是染色质调节的关键成分。在去年,Berger组证明了组蛋白变体与组蛋白的翻译后修饰至关重要,从而塑造了染色质指示转录调控。His-Tone变体H2A.X在维修DNA的机械中起着关键作用。Berger Group在拟南芥中确定了这一途径的两个关键参与者。此外,他们还表征了与调节转座活性的特定类型组蛋白变体的沉积相关的染色质重塑剂。最近该组还表明,在陆地植物的进化过程中,翻译后修饰H3K27me3将其靶标从转座子转换为控制基因沉默的顺式元素。H3K27me3的新功能有可能重塑植物的基因组。
5-甲基胞嘧啶 (5mC) 是一种广泛存在的沉默机制,可控制基因组寄生虫。在真核生物中,5mC 在寄生虫控制之外的基因调控中发挥着复杂的作用,但 5mC 也在许多谱系中丢失了。5mC 保留的原因及其基因组后果仍不太清楚。在这里,我们表明与动物密切相关的原生生物阿帕拉契变形虫具有转座子和基因体甲基化,这种模式让人联想到无脊椎动物和植物。出乎意料的是,变形虫中高甲基化的基因组区域源自病毒插入,包括数百种内源化巨型病毒,占蛋白质组的 14%。使用抑制剂和基因组分析的组合,我们证明 5mC 可以抑制这些巨型病毒插入。此外,替代的变形虫分离株显示出多态性巨型病毒插入,突显了感染、内源化和清除的动态过程。我们的结果表明,5mC 对于新获得的病毒 DNA 与真核生物基因组的受控共存至关重要,这使得变形虫成为了解真核生物 DNA 混合起源的独特模型。
人们越来越多地研究将红酵母用作脂质、脂肪酸衍生物和萜类化合物的生物生产宿主。人们已经开发了各种遗传工具,但尚未报道过着丝粒和自主复制序列 (ARS),而这两者都是维持稳定的游离质粒所必需的元素。在本研究中,使用靶标下切割并使用核酸酶释放 (CUT&RUN)(一种用于全基因组 DNA-蛋白质相互作用映射的方法)来识别与着丝粒组蛋白 H3 蛋白 Cse4(着丝粒 DNA 的标记)相关的红酵母 IFO0880 基因组区域。识别并分析了 15 个长度从 8 到 19 kb 不等的假定着丝粒,并对其中四个进行了 ARS 活性测试,但未显示 ARS 活性。这些着丝粒序列含有低于平均水平的 GC 含量,对应于转录冷点,主要是非重复的,并且共享一些残留转座子相关序列,但除此之外没有显示显著的序列保守性。未来在该酵母中识别 ARS 的努力可以利用这些着丝粒 DNA 序列来提高来自假定 ARS 元素的游离质粒的稳定性。
摘要|睡美人(SB)转座子是脊椎动物基因转移的有前途的技术平台;但是,其基因插入的效率可能是主要细胞类型中的瓶颈。与第一代转座酶相比,哺乳动物细胞中的大规模遗传筛选产生了效率约100倍的过度转座酶(SB100X)。SB100X在富含造血干或祖细胞的人CD34 +细胞中支持35–50%稳定的基因转移。在免疫缺陷小鼠中基因标记的CD34 +细胞移植导致长期植入和造血重建。此外,SB100X支持体内小鼠肝脏转骨后的生理水平IX的持续(> 1年)表达。最后,SB100X可重复地导致45%稳定的转基因频率通过核心显微注射到小鼠Zygotes中。非病毒基因递送后,新开发的转座酶产生前所未有的稳定基因转移效率,与稳定的转导效率相比,与稳定的转导效率相比,预计在功能基因组学和基因疗法中广泛应用。
