图 1:AtomGPT 工作流程的示意图。AtomGPT 既可用于正向模型(原子结构到属性)预测,也可用于使用 LLM 的逆向设计(属性到原子结构生成)。a) 集成文本到材料属性预测、文本输入到原子结构生成、预筛选、统一机器学习力场 (MLFF) 优化和基于密度泛函理论 (DFT) 计算/实验 (Exp) 的验证过程 b) BCS 超导体 MgB 2 (JVASP-1151) 的示例晶体结构,c) 使用 ChemNLP 对 MgB 2 原子结构进行文本描述,包括明确的原子结构以及化学信息,d) 使用 Alpaca 格式的文本提示到明确的原子结构生成示例。
1名学生,2名学生,3名学生,4位助理教授,1,2,3,4电气工程系1,2,3,4 Gramin技术与管理校园,NANDED,印度,摘要:由于需求的增长,电动汽车(EVS)日益严重。 在EVS中,需要进行广泛的研究,以替代石油和其他燃料的替代品。 与燃烧引擎车相比,电动汽车在提供舒适性和效率方面取得了成功,但电动汽车仍然需要注意电动汽车的充电。 电动汽车的充电时间更长,每个制造公司都有不同的电池布置,因此充电器的评级不同。 我们提出了设计通用系统,用于使用脉冲宽度调制,以用于电池充电。 我们正在对“ PWM控制的通用电动汽车电池充电器”开发MATLAB模拟。 提议的系统将足够聪明,可以识别电动电动电气电池的电压额定值。 识别电池PWM受控电池充电器后,将在最短时间内为电动汽车电池充电。 该系统将在电动汽车研究领域发挥重要作用。 索引项 - MATLAB模拟。 引言电动汽车(EV)的基础设施随着电动汽车市场的增长而变得重要。 两个主流电荷连接器协议是充电DE移动(Chademo)和联合充电系统(CCS),它们具有不同的电池电压范围。 通用充电器的 DC/DC转换器需要在整个输出电压范围内实现高效率。1名学生,2名学生,3名学生,4位助理教授,1,2,3,4电气工程系1,2,3,4 Gramin技术与管理校园,NANDED,印度,摘要:由于需求的增长,电动汽车(EVS)日益严重。在EVS中,需要进行广泛的研究,以替代石油和其他燃料的替代品。电动汽车在提供舒适性和效率方面取得了成功,但电动汽车仍然需要注意电动汽车的充电。电动汽车的充电时间更长,每个制造公司都有不同的电池布置,因此充电器的评级不同。我们提出了设计通用系统,用于使用脉冲宽度调制,以用于电池充电。我们正在对“ PWM控制的通用电动汽车电池充电器”开发MATLAB模拟。提议的系统将足够聪明,可以识别电动电动电气电池的电压额定值。识别电池PWM受控电池充电器后,将在最短时间内为电动汽车电池充电。该系统将在电动汽车研究领域发挥重要作用。索引项 - MATLAB模拟。引言电动汽车(EV)的基础设施随着电动汽车市场的增长而变得重要。两个主流电荷连接器协议是充电DE移动(Chademo)和联合充电系统(CCS),它们具有不同的电池电压范围。DC/DC转换器需要在整个输出电压范围内实现高效率。通常,Chademo覆盖了最高500 V的相对低压电池,CCS覆盖了最高950 V的高压电池。要与所有EVS兼容,以适应Chademo或CCS,需要开发一个覆盖电池电压极广泛的通用EV充电器。src由于其较大的磁性电感而导致其循环损失较小,导致在谐振频率下的效率较高,但是,SRC仅提供降低电压转换率,而LLC转换器达到了启动频率的增益,而当切换频率变小时,则在较小的情况下,由于循环的循环量是在交付的方面,并且在ersonant consection中存储了这些方面,并且在这些方面取得了循环范围,而这些方面是在这些方面取得的范围,而这些方面是在这些方面取得的范围,而这些循环均可在这些方面取出,而这些均可在这些方面取得了进出,而这些转换率是在这些方面的转换,则可以在这些方面取得了进出,而这些转换率是在这些方面的转换,而这些均可依次,而循环均可置换。请注意,SRC的循环电流较小,但增益范围也有限。因此,如果在SRC中可以实现更广泛的增益,则有可能同时具有较小的循环电流和广泛的增益。由于这些原因,已经有几种方法可以为SRC提供更广泛的收益。第一种方法是脉冲宽度调制(PWM)调整的谐振转换器。在这种方法中,PWM信号引起的增强周期会增强谐振电流,从而使谐振转换器可以实现增益。这样做,可以通过较窄的开关频率范围覆盖各种电压转换比。可以通过较窄的开关频率范围降低磁性组件的尺寸。唯一的问题是当需要高增益时,共振电流的峰值很大。第二种方法是一种拓扑化技术。谐振电流的大峰会引起大的RMS电流,并导致增强开关损失。在这种方法中,控制某个开关组件以重新配置逆变器或整流器结构。例如,通过完全打开开关,全桥逆变器也可以用作半桥逆变器。
摘要 —最近的研究估计,工厂运营和维护活动的优化在全球范围内具有 1.2 至 3.7 万亿美元的经济潜力。数字孪生提供了一个实现此类优化的框架,通过研究虚拟空间中的潜在改进,然后再将其应用到现实世界。我们研究了基于系统故障行为通用模型的数字孪生在维护优化中的应用,方法是将现有方法结合到一个通用框架中。将其应用于现实世界的电源转换器用例,我们发现根据操作条件,反应性维护或预防性维护更具成本效益。这允许预测现有和未来系统的最佳维护。索引词 —预防性维护、故障物理学、数字孪生、虚拟工厂
摘要 - 本文介绍了用于电动汽车电池充电应用的单端初级电感转换器 (SEPIC) 的设计和仿真。SEPIC 转换器是一种 DC-DC 转换器,旨在提供稳定的输出电压,同时适应各种输入电压。SEPIC 转换器以其高效率和高可靠性而闻名,可以将输出电压调节为高于或低于输入电压。DC-DC 转换器因其低输出电压纹波和高效率而特别吸引研究人员,使其成为需要低噪声和高功率密度的应用的理想选择。DC-DC 转换器性能和可靠性的不断进步对于满足现代技术日益增长的需求至关重要。SEPIC 转换器与降压-升压转换器有相似之处,结合了降压和升压功能,具有输入和输出电压极性相同、效率高以及输出侧和输入侧之间电容隔离等优点。本文使用 MATLAB 软件对开环和闭环配置中的 SEPIC 转换器进行了仿真,并进行了介绍。
1电子与光学工程学院,微电子学院,南京邮政与电信大学,中国南京210023; 2020020114@njupt.edu.cn(Y.W。); 1219023530@njupt.edu.cn(X.C.); b18020308@njupt.edu.cn(D.S.); zmcstudy@163.com(M.Z。); 1320027503@njupt.edu.cn(X.C.); iamethu@njupt.edu.cn(E.H.); leiwang1980@njupt.edu.cn(l.w.)2 GUSU材料实验室,中国苏州215000; shaoweijing2020@gusulab.ac.cn(W.S. ); guhong2021@gusulab.ac.cn(H.G.) 3南京邮政与电信大学高级材料研究所(IAM),中国南京210023; 1220066008@njupt.edu.cn 4材料科学与工程学院,Yancheng理工学院,Yancheng 224051,中国; jgxu@163.com *通信:xurq@njupt.edu.cn(R.X. ) ); tongyi@njupt.edu.cn(y.t。)2 GUSU材料实验室,中国苏州215000; shaoweijing2020@gusulab.ac.cn(W.S.); guhong2021@gusulab.ac.cn(H.G.)3南京邮政与电信大学高级材料研究所(IAM),中国南京210023; 1220066008@njupt.edu.cn 4材料科学与工程学院,Yancheng理工学院,Yancheng 224051,中国; jgxu@163.com *通信:xurq@njupt.edu.cn(R.X.); tongyi@njupt.edu.cn(y.t。)
摘要 — 本文旨在比较具有宽输入电压范围的 DC/DC 拓扑。研究还解释了 GaN E-HEMT 晶体管的实现如何影响转换器的整体效率。本文介绍了选择最有效拓扑的过程,以将电池存储电压(9 V – 36 V)稳定在 24 V 水平,从而能够在自动电动汽车等广泛应用中使用超级电容器储能。为了选择最合适的拓扑,进行了模拟和实验室研究。选择了两种最有前途的拓扑在实验模型中进行验证。每个转换器都以两种版本构建:使用 Si 和 GaN E-HEMT 晶体管。本文介绍了实验研究结果,包括精确的功率损耗测量和热分析。还检查了转换器开关频率增加时的性能。
摘要:本文介绍了一种用于电网连接应用的三相多电平多输入功率转换器拓扑。它包含一个三相变压器,该变压器在初级侧以开端绕组配置运行。因此,初级绕组的一侧由三相 N 电平中性点钳位逆变器供电,另一侧由辅助两电平逆变器供电。所提方法的一个关键特点是 N 电平逆变器能够独立管理 N - 1 个输入电源,从而避免了在混合多源系统中需要额外的直流/直流功率转换器。此外,它还可以管理连接到两电平逆变器直流总线的储能系统。 N 级逆变器以低开关频率运行,可配备导通压降极低的绝缘栅双极晶体管 (IGBT) 器件,而辅助逆变器则根据传统的高频两级脉冲宽度调制 (PWM) 技术以低压运行,可配备导通电阻极低的金属氧化物半导体场效应晶体管 (MOSFET) 器件。模拟和实验结果证实了所提方法的有效性及其在电网电流谐波含量和整体效率方面的良好性能。
本文旨在详细研究非反相降压-升压转换器的评估和特性。为了改善降压-升压转换器在三种工作模式下的行为,我们提出了一种基于峰值电流控制的架构。使用三模式选择电路和软启动电路,该转换器能够扩大功率转换效率并减少反馈回路的浪涌电流。建议的转换器设计为以可变输出电压运行。此外,我们使用导通电阻低的 LDMOS 晶体管,这适用于 HV 应用。结果表明,与其他架构相比,所提出的降压 - 升压转换器的性能更完美,并且它使用 0.18 µ m CMOS TSMC 技术成功实现,输出电压调节为 12 V,输入电压范围为 4-20 V。在负载电流为 4 A 时,降压、升压和降压-升压三种工作模式的功率转换效率分别为 97.6%、96.3% 和 95.5%。
1 威斯康星大学密尔沃基分校可持续电能系统中心,美国密尔沃基 2 土耳其安卡拉加齐大学技术学院电气与电子工程系 jeanpie4@uwm.edu;aie@uwm.edu;naltin@gazi.edu.tr;nasiri@uwm.edu 收稿日期:2020 年 4 月 10 日 接受日期:2020 年 6 月 22 日 摘要 - 近年来,用于并网应用的结合光伏 (PV) 系统和集成储能的分布式发电厂的研究兴趣日益增加。然而,多种能源的组合需要大量的 DC-DC 转换器,因此变得更加复杂。为了解决这个问题,本研究提出了一种用于并网应用的多端口双向 DC-DC LLC 谐振转换器。为了最大限度地降低所提系统的控制复杂性,还开发了一种基于区域的控制器方法,该方法集成了基于增量电导法的改进最大功率点跟踪 (MMPPT) 方法。该控制器能够在从公用电网输送或获取电力时调节转换器电压和功率流。本研究中介绍的转换器包含一个双向降压-升压转换器和一个 LLC 谐振转换器,以及一个电压源并网逆变器。它们都与 PV、电池和公用设施连接。通过 MATLAB/Simulink 进行的大量仿真分析证明了所提拓扑的运行。