连续评估:50%的最终考试:总计50%:100%阅读和参考文献主要教科书是宏观经济学原理,任何版本从8到12号,由Karl Case,Ray Fair和Ray Fair和Sharon Oster,Pearson Prentice Hall(NTU库呼叫编号:HB172.5.C337)。在下面的每周时间表中,本教科书称为CFO,章节数字来自第10版。此外,强烈建议将Gregory Mankiw撰写的宏观经济学原则用于广泛阅读。具有强烈理论偏好和数学背景的学生,建议享受安德鲁·ABEL,本·伯南克和迪恩·克鲁斯霍尔的宏观经济学教科书。,我还将不时上传有用的数据集的来源,媒体的新闻以及著名的经济学家对局部宏观经济问题的意见,这些问题与我们的课程有关,这些问题与我们的课程相关,属于Ntulearn,“对于那些感兴趣的人”。这意味着此类内容不会出现在您的期末考试或中期测验中。相反,它将您从本课程中学到的知识与现实世界的例子联系起来,使宏观经济原则相关,有趣且有用,并帮助您欣赏经济理论的力量和美丽。课程讲师
非常适合于隔热和隔音材料。此外,玻璃材料的制造成本非常高,而且还需要长时间的热处理,从而消耗大量的能源。另一方面,通过采用低成本的常压干燥工艺,可以显著节省透明二氧化硅气凝胶的制造成本。然而,二氧化硅气凝胶由于其项链状微结构和弱的颗粒间结合,通常机械性较脆,14 并且在气凝胶材料中保持高隔热性和高光学透明度仍然具有挑战性。15 因此,在表现出低热导率的同时获得透明且机械强度高的二氧化硅气凝胶至关重要。在本研究中,我们报告了一种制造透明隔热二氧化硅气凝胶材料的合成策略,实现了 18 mW m 1 K 1 的低热导率和可见透明度(400 nm 和 800 nm 的广谱透明度为 70%)。溶剂交换过程促进了它们的光学透明度,而疏水表面改性则可抵抗环境压力干燥过程中的孔隙塌陷并保持其结构完整性。高可见光透明度、低热导率、8% 低声强的隔音效果以及加入透明聚合物的可扩展制造展示了它们在透明窗口材料中的潜在应用。同时,与透明二氧化硅气凝胶结合的太阳能接收器可以在 1 太阳辐射下 12 分钟内达到 122 摄氏度,比环境大气中高 200%。透明的工程结构
抽象的结构性马氏体变换实现了各种应用,从高冲程致动,感应到能源有效的磁性制冷和热蛋白网络能量收集。所有这些新兴应用程序都受益于快速转换,但是直到现在尚未探索其速度限制。在这里,我们证明了热弹性马氏体对奥斯丁岩转化的转化可以在10 ns之内完成。我们使用纳米秒激光脉冲加热外延Ni -Mn -GA膜,并使用同步加速器衍射来探测初始温度和过热对转化速率和比率的影响。我们证明,热能的增加可以更快地驱动这种转换。尽管观察到的速度极限为2.5×10 27(JS)1个单位单元格留出足够的空间以进一步加速应用,但我们的分析表明,实际极限将是切换所需的能量。因此,马氏菌的转化遵守与微电子相似的速度限制,如玛格鲁斯 - 左旋蛋白定理所表达的。
在计算机图形学出现之前,抽象数据大多以 2D 形式表示,用于报告、书籍或海报的发布。同时,3D 表示仅限于空间数据的物理构造,如地理地球仪、化学、医学或建筑模型。具有合理图形能力的第一波台式计算机导致投射到 2D 屏幕上的 3D 数据表示激增。这可以说导致了 3D 图形的过度使用——例如 Tufte 和其他人非常讨厌的经典免费 3D 图表——早期对 2D 屏幕上 3D 可视化的研究证明了它们的局限性。此后,这导致信息可视化研究界在很长一段时间内围绕 2D 表示巩固信息可视化设计空间,以最佳方式安排 2D 屏幕。近年来,随着混合现实 (MR) 技术的兴起,我们需要重新考虑一些关于数据可视化“自然栖息地”的假设。混合现实 (MR) 耳机,例如 Microsoft HoloLens 2,终于实现了无线、强大的空间跟踪和具有合理视野的高分辨率立体渲染。这些耳机现在还可以了解其环境,映射房间中的表面并跟踪其用户的手势。我们可以渲染在环境中任何表面上明显投射的 2D 类图形,渲染从所述表面明显突出的 2.5D 类图形,或将它们悬浮在我们周围的 3D 空间中 - 所有这些都同样轻松且保真(图 2)。这项新功能为我们提供了沉浸式环境中数据可视化的新设计选择和可能性——也称为沉浸式分析 [ 10 , 41 ]。当然,我们应该继续以最佳方式可视化数据,无论是在 2D 表面还是在 3D 空间中。然而,借助 MR 提供的灵活性,我们可以考虑任何给定的可视化如何在两个环境(表面或空间)之间自由移动,以满足用户的需求。想象一下,只需用手抓住并拉动显示器中的 2D 可视化,即可将一些数据编码到第三空间维度(图 1a),从而将 2D 可视化暂时从显示器中挤出到 3D 中,或者从平板电脑中挤出可视化并将其悬浮在您面前的空间中(图 1b)。这些可视化还可以放置在任意表面上,模仿大型墙壁大小的 2D 显示屏,同时保留 3D 的灵活性(图 1c)。与此相反,我们还可以将 3D 可视化平面化为表面上的 2D,例如通过应用投影或创建横截面视图。在沉浸式环境中支持表面和空间之间的这些转换已被确定为沉浸式分析的重大挑战之一 [17]。虽然最近的工作(第 2 节)已经展示了涉及使用 2D 表面和显示器与 MR 结合进行数据可视化的应用,但我们特别关注可视化
摘要。在开发具有破缺基尔霍夫对称性的非互易光学元件方面取得了重大进展,为通过重复使用发射光子将光伏 (PV) 转换效率提高到超越肖克利-奎塞尔极限铺平了道路。最近的论文分析了具有多个或无限多个多结电池的 PV 转换器,其中电池通过非互易滤波器(光学二极管)耦合,使得一个电池发出的光被另一个电池吸收。我们提出并研究了一种具有非互易外部光子回收的单电池转换器,该转换器可由同一电池重新吸收和重复使用发射光。我们从遍历性、无序性、能量可用性、信息熵和相干性的角度考虑了阳光中光子的属性,并确定了内可逆热力学对最大功率输出时转换效率施加的基本限制。我们的结果表明,具有理想多结电池的非互易转换器可以接近卡诺效率,而精确地在卡诺极限下工作则需要无数个光子循环过程。这一要求解决了光学二极管著名的热力学悖论,因为无限循环增强的电池或光学系统中的任何小耗散都将使转换器工作稳定在卡诺极限以下。我们将内可逆热力学推广到具有非零化学势的光子分布,并推导出非互易单结 PV 转换器的极限效率。评估了该转换器与可用 GaAs 太阳能电池的性能。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JPE.12.032207]
可再生能源的转换和储存是我们实现从化石燃料经济向低碳社会转型的迫切挑战。我很难想象,如果没有材料科学和技术的进一步突破,这场革命会如何发生。事实上,当代材料史凸显了许多改变游戏规则的材料,这些材料对我们的生活产生了深远的影响,并有助于减少二氧化碳排放。高效光伏电池、蓝色发光二极管和锂离子电池阴极是基于知识的材料发展最具启发性的例子,它们经历了指数级的市场渗透,并获得了最高的科学奖项。这些成功案例与材料科学中的许多其他案例一样,都是建立在对纳米级相互关联的过程进行定制控制的基础上的,例如电荷激发、电荷传输和复合、离子扩散、插层以及物质和电荷的界面转移。纳米结构材料由于其超小的构造块和较高的界面体积比,为那些希望提高材料的能量转换效率或功率和能量密度的科学家提供了丰富的工具箱。纳米科学使材料定制工具的例子包括:(i)快速分离和收集光激发电荷,避免复合问题;(ii)由于表面积大而具有高催化活性;(iii)加速离子和原子沿纳米晶体界面的扩散,以及(iv)由于纳米结构表面的低反射率而增强的光收集。此外,纳米粒子(NPs)中还会出现新现象,例如表面等离子体共振,它极大地改变了金属和电磁场之间的相互作用,超顺磁性,将铁磁粒子变成集体顺磁体,以及激子约束,这会导致半导体量子点的尺寸相关颜色。本期特刊发表的 10 篇文章展示了纳米材料在能量存储和转换领域的不同应用,包括锂离子电池 (LIB) 电极及其他应用 [ 1 – 3 ]、光伏材料 [ 4 – 6 ]、热释电能量收集 [ 7 ] 和 (光) 催化过程 [ 8 – 10 ]。以下简要总结了这些科学贡献。目前正在研究用于替代 LIBs 中石墨的三种主要阳极材料:(i) 新型碳质材料,(ii) 转化型过渡金属化合物,以及 (iii) Si 和 Sn 基阳极。Dai 等人报道了通过脉冲激光沉积在纳米多孔氧化铝模板上制备的有序 SnO 2 纳米柱阵列的电化学性能,并用作 LIBs 的转化型阳极 [ 1 ]。有序的纳米柱结构为锂化/脱锂过程中的体积膨胀提供了充足的空间,提供了一种缓解影响转化型阳极的性能下降的策略。改进的结构完整性和稳定性使其在 1100/6500 次循环后仍能保持 524/313 mAh/g 的高比容量。在 Azib 等人的研究中,Si/Ni 3.4 Sn 4 复合阳极中 Si 纳米粒子的表面化学性质通过碳或氧化物涂层进行改性 [ 2 ]。在通过球磨制备复合材料的过程中,涂层大大降低了 Si 和 Ni 3.4 Sn 4 之间的反应。碳涂覆的 Si 粒子具有更好的锂化性能,可以提供超过
Inma Borrella博士,MaríaJesúsSáenz博士和Elena Revilla博士仅写了此案,仅供课堂讨论提供材料。 作者无意说明对管理情况的有效处理或无效处理。 作者可能已经掩盖了某些名称和其他识别信息以保护机密性。 未经版权持有人许可,本出版物不得以任何形式或任何方式传输,复印,数字化或以其他方式复制。 该材料的复制均未在任何复制权组织的授权下涵盖。 要订购副本或要求允许复制材料,请联系Ivey Publishing,Ivey Business School,Western University,伦敦,安大略省,加拿大安大略省,N6G 0N1; (t)519.661.3208; (e)cases@ivey.ca; www.iveycases.com。 我们的目标是发表最高质量的材料;提交任何Errata到publishcase@ivey.ca。 I1V2E5Y5PUBS版权所有©2021,Ivey商学院基金会版本:2021-12-13Inma Borrella博士,MaríaJesúsSáenz博士和Elena Revilla博士仅写了此案,仅供课堂讨论提供材料。作者无意说明对管理情况的有效处理或无效处理。作者可能已经掩盖了某些名称和其他识别信息以保护机密性。未经版权持有人许可,本出版物不得以任何形式或任何方式传输,复印,数字化或以其他方式复制。该材料的复制均未在任何复制权组织的授权下涵盖。要订购副本或要求允许复制材料,请联系Ivey Publishing,Ivey Business School,Western University,伦敦,安大略省,加拿大安大略省,N6G 0N1; (t)519.661.3208; (e)cases@ivey.ca; www.iveycases.com。我们的目标是发表最高质量的材料;提交任何Errata到publishcase@ivey.ca。I1V2E5Y5PUBS版权所有©2021,Ivey商学院基金会版本:2021-12-13I1V2E5Y5PUBS版权所有©2021,Ivey商学院基金会版本:2021-12-13
良好的学术工作取决于诚实和道德行为。您作为学生的工作质量依赖于遵守学术诚信原则和NTU荣誉守则,这是整个大学社区共有的一系列价值观。真理,信任和正义是NTU共同价值观的核心。作为NTU的学生,重要的是,您必须认识到自己在大学所做的所有工作中理解和运用学术完整性原则时的责任。不知道维持学术诚信的涉及什么并不是学术不诚实的理由。您需要积极配备自己的策略,以避免各种形式的学术不诚实,包括窃,学术欺诈以及勾结和作弊。如果您不确定任何这些条款的定义,则应访问学术完整性网站以获取更多信息。如果您需要对课程中的学术完整性要求进行任何澄清,请咨询您的讲师。
课程的目的本课程是对高级材料处理的介绍,重点是微型/纳米电子。对于那些希望专门从事微电子设备制造的人来说,这是至关重要的。它也是第四年提供的更先进的微电子选修模块的先决条件。该主题包括基本半导体操作和设备物理学的简介。该课程涵盖了半导体技术的基础知识,从裸硅到成品。过程步骤包括散装晶体生长,氧化,扩散,离子植入,薄膜沉积,光刻和蚀刻。将突出显示从过程步骤中影响材料特性的因素。纳入最先进的半导体过程中的新材料。引入了光刻和膜沉积中的高级技术,以及先进的新型设备。预期的学习成果(ILO)在课程结束时,您应该能够:1。计算掺杂半导体的载体电阻率,电导率和载体浓度。2。解释掺杂浓度如何影响硅的电阻率,电导率和载体迁移率。3。解释典型的硅晶圆制造过程的目的,包括热
基于海洋温差能转换的多能源系统 李志浩,苏嘉鹏,余晖,金安军*,王静 宁波大学航海学院,浙江省宁波市 315000 *: 通讯作者:(+86) 18600699878; ajjin at nbu.edu.cn 摘要:海洋温差能资源十分丰富,是清洁能源输出的良好条件。首先,全球海洋温差能总量约为400亿kW,而海洋温差能转换(OTEC)清洁可再生,发电稳定,储能能力强,积极开发利用海洋温差能资源对实现海洋强国战略具有重要意义。其次,针对传统OTEC的效率限制,作者提出了一种基于OTEC的多能互补系统来提高系统效率。该方法将太阳能、风能和储能集成到一个互补的OTEC系统中,该互补系统在系统级设置参数。例如,设计了一个1MW的集成发电系统,并通过计算理论模型,利用计算机辅助设计与仿真对该系统进行了研究。太阳能互补供热的OTEC系统的效率可达12.8%,综合效率可达18.6%。此外,OTEC还有许多有益的副产品,被认为对生态系统有益。最后,本文分析了该方法的基本原理和工作过程,并计算了系统效率。结果表明,与传统OTEC相比,互补系统可以提高发电输出效率、稳定性和海洋能利用率。关键词:海洋温差能转换,多能互补,太阳能互补供热,开式循环OTEC1.引言当今世界,能源消耗迅速增加,化石能源日益减少,环境污染和温室效应越来越严重地影响着我们的日常生活。因此,可再生能源对改变能源基础设施,维持人类能源利用的长远发展发挥着重要作用。据统计,赤道以南24°以南1000m处水温约为4℃,海面水温约为30℃,深海与海面温差蕴藏的能量约为10 13 W(Song,2019),海洋温差年发电潜力约为87600TWh,而全球每年的用电量约为16000TWh(Khan et al,2017)。而且海洋能可再生、稳定、清洁、无污染,具有很高的开发利用价值,浩瀚的海洋能资源对全球而言是一笔巨大的资源。海洋热能转换(OTEC)系统通过驱动暖海水和冷深海水之间的热力学卡诺热机来发电。OTEC系统的概念是一种具有百年历史的先进绿色能源技术。历史上众所周知,海洋资源具有巨大的经济价值(Torgeir 2019;Cheng 2019)。在某些情况下,大气沉降