自发参量下转换 (SPDC) 几十年来一直是探索量子现象及其应用的关键技术。例如,传统的 SPDC 将高能泵浦光子分裂成两个低能光子,是产生纠缠光子对的常用方法。自 SPDC 早期实现以来,研究人员一直想将其推广到更高阶,例如产生纠缠光子三重态。然而,通过单个 SPDC 过程直接生成光子三重态仍然难以实现。在这里,我们使用通量泵浦超导参量腔展示了直接三光子 SPDC,光子三重态在单腔模式下生成或在多个模式之间分裂。在强泵浦下,状态可以非常明亮,通量密度超过每秒每赫兹 60 个光子。观察到的状态是强非高斯的,这对潜在应用具有重要意义。在单模情况下,我们观察到正交电压的三角星形分布,这表明了长期预测的“星态”。观测到的状态表现出强的三阶关联,这与立方哈密顿量产生的状态预期一致。通过以多种模式的和频进行泵浦,我们观察到多种模式之间存在强的三体关联,令人惊讶的是,在没有二阶关联的情况下也是如此。我们进一步分析了辛对称群模式变换下的三阶关联,表明观察到的变换性质可以“指纹化”产生它们的特定立方哈密顿量。观测到的非高斯三阶关联代表了量子光学领域向前迈出的重要一步,可能对微波场的量子通信以及连续变量量子计算产生重大影响。
© Springer-Verlag GmbH 德国,Springer Nature 2019 的一部分 本作品受版权保护。所有权利均由出版商保留,无论涉及全部或部分材料,特别是翻译、重印、重新使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着(即使没有具体声明)这些名称不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以安全地假定本书中的建议和信息在出版之日是真实和准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图中的司法管辖权主张和机构隶属关系保持中立。
四十多年来,随着功率金属氧化物硅场效应晶体管 (MOSFET) 结构、技术和电路拓扑的创新与日常生活中对电力日益增长的需求保持同步,电源管理效率和成本稳步提高。然而,在新千年,随着硅功率 MOSFET 渐近其理论界限,改进速度已经放缓。功率 MOSFET 于 1976 年首次出现,作为双极晶体管的替代品。这些多数载流子器件比少数载流子器件速度更快、更坚固,电流增益更高(有关基本半导体物理的讨论,一个很好的参考资料是 [1])。因此,开关电源转换成为商业现实。功率 MOSFET 最早的大批量消费者是早期台式计算机的 AC-DC 开关电源,其次是变速电机驱动器、荧光灯、DC-DC 转换器以及我们日常生活中成千上万的其他应用。最早的功率 MOSFET 之一是国际整流器公司于 1978 年 11 月推出的 IRF100。它拥有 100V 漏源击穿电压和 0.1 Ω 导通电阻 (R DS(on)),堪称当时的标杆。由于芯片尺寸超过 40mm2,标价为 34 美元,这款产品注定不会立即取代备受推崇的双极晶体管。从那时起,几家制造商开发了许多代功率 MOSFET。40 多年来,每年都会设定基准,随后不断超越。截至撰写本文时,100V 基准可以说是由英飞凌的 BSZ096N10LS5 保持的。与 IRF100 MOSFET 的电阻率品质因数 (4 Ω mm 2 ) 相比,BSZ096N10LS5 的品质因数为 0.060 Ω mm 2 。这几乎达到了硅器件的理论极限 [2]。功率 MOSFET 仍有待改进。例如,超结器件和 IGBT 已实现超越简单垂直多数载流子 MOSFET 理论极限的电导率改进。这些创新可能还会持续相当长一段时间,并且肯定能够利用功率 MOSFET 的低成本结构和一批受过良好教育的设计人员的专业知识,这些设计人员经过多年学习,已经学会了从功率转换电路和系统中榨干每一点性能。
摘要 尽管代码转换研究可能因语境和情况而异,但代码转换的共同因素有三方面。也就是说,代码转换涉及接触中的语言。在互动的社交场合中,代码转换是指使用多种语言。例如,在各种社交活动中,涉及懂多种语言的对话者的互动。Gumperz (1982) 在讨论代码转换的交际功能时声称,说话者利用我们代码的连接来创造对话效果。因此,代码转换被视为实现语言的关系功能和指称功能,从而实现有效沟通和语间统一。随着越来越多的儿童进入学校,各学区面临着满足他们的学业需求的问题。这些孩子带着不同的语言(母语)进入课堂。一些学校采用了双语教育计划,用印尼语和英语教授科目。另一些学校则相信沉浸式教学,或将学生安置在主流课堂中,在那里他们需要同时学习英语和用英语教授的科目。还有一些学校则徘徊在两者之间,努力寻找与这些孩子/学生接触的最佳方式。哪些因素会影响/迫使学生在话语中使用代码转换?代码转换对 L2 儿童/学生有什么好处?代码转换的交流功能是什么?这些问题是全国双语教育争论的焦点。本研究探讨了不同类型教育(如双语教育)的影响。具体来说,本文讨论了代码转换(在同一话语中同时使用印尼语/萨萨克语和英语)在双语环境中的作用。关键词:交流功能、代码转换、双语和多语。
我们解决了在投机语义下在编译器转换之间保留非干预的问题。我们开发了一种证明方法,以确保在所有源程序中均匀保存。我们证明方法的基础是一种新的模拟关系形式。它通过指令进行操作,该指令对攻击者对微构造状态的控制进行建模,并且它解释了编译器转换可能会改变微构造状态对执行(以及指令)的影响。使用我们的证明方法,我们显示了消除死亡代码的正确性。当我们试图证明注册分配正确时,我们确定了以前未知的弱点,该弱点会引入非干预。我们已经证实了libsodium密码库中代码上主流编译器的弱点。为了再次获得安全性,我们开发了一种新颖的静态分析,该分析可在源程序和寄存器分配程序的产品上运行。使用分析,我们向现有的注册分配实现提供了一个自动修复程序。我们通过证明方法证明了固定寄存器分配的正确性。