神经辐射场(NERFS)在各种应用程序中都表现出有希望的结果,已获得流行。据我们所知,现有作品并未明确对训练相机姿势的分布进行建模,或者因此是三角测量质量,这是影响重建质量的关键因素,它可以追溯到经典视觉文献。 我们用Provernf缩小了这一差距,该方法是将每个点的出处(即可能可见的位置)建模为NERFS作为随机场的方法。 我们通过将隐式最大似然估计(IMLE)扩展到具有优化目标的功能空间来实现这一目标。 我们表明,在NERF优化过程中对每点出处进行建模丰富了模型,并提供了三角剖分的信息,从而改善了新型视图合成和在针对竞争性基线的具有挑战性的稀疏,无约束的视图设置下的不确定性估计。据我们所知,现有作品并未明确对训练相机姿势的分布进行建模,或者因此是三角测量质量,这是影响重建质量的关键因素,它可以追溯到经典视觉文献。我们用Provernf缩小了这一差距,该方法是将每个点的出处(即可能可见的位置)建模为NERFS作为随机场的方法。我们通过将隐式最大似然估计(IMLE)扩展到具有优化目标的功能空间来实现这一目标。我们表明,在NERF优化过程中对每点出处进行建模丰富了模型,并提供了三角剖分的信息,从而改善了新型视图合成和在针对竞争性基线的具有挑战性的稀疏,无约束的视图设置下的不确定性估计。
摘要 该研究介绍了对孕妇进行放射治疗过程中涉及的物理和放射防护方面的问题,这些问题有助于胎儿的安全和发育。对已确诊妊娠并接受放射治疗的临床病例的研究进行了分析。该工作还通过文献中提出的实验测量和计算模拟,分析了考虑到胎儿区域的估计吸收剂量的不同治疗领域的具体剂量测定方案。讨论了 AAPM 报告 TG 36 中提出的胎儿辐射概念,重点关注使用适当的屏蔽和主要辐射场外的外周剂量分布的影响。研究并未就胎儿暴露的阈值剂量达成共识,其值在2至25 cGy之间变化,取决于妊娠期和腹部内的位置。巴西放射防护机构建议,怀孕期间受到职业照射的孕妇腹部所受辐射剂量当量不应超过2.0毫希沃特。测量结果表明,造成胎儿受照剂量增加的主要因素有:头部逸出的辐射、准直器的散射以及胎儿周围受照射区域组织的弥散。所分析的科学文章中所示的研究结果和实际临床情况表明,只要对胎儿的剂量低于指示的阈值,对孕妇进行放射治疗是可行的,这可以通过使用屏蔽和适当的辐射场配置来实现,并由专业物理学家在治疗前模拟治疗并进行正确的计划。这项工作旨在为怀孕患者放射治疗过程中的治疗决策提供支持,指出需要治疗时的风险和益处。
绝大多数星形星系都被星际介质弹出的大量气体包围。紫外线的吸收和发射线代表强大的诊断,以通过氢和金属离子的谐振过渡来限制这些流量的凉爽相。对这些观察结果的解释通常很困难,因为它需要对气体中连续性和发射线传播的详细建模。为了实现这一目标,我们提供了一个大约20000个模拟光谱的大型公共网格,其中包括与Mg II,C II,C II,SI II和Fe II相关的H ilyα和五个金属过渡,可在线访问。光谱已经使用Rascas Monte Carlo辐射传输代码计算出5760个理想化的球形对称配置,围绕中心点源发射,并以其柱密度,多普勒参数,尘埃不透明,风速,风速以及各种密度和速度渐变为特征。旨在预测和解释LYα和金属线专利线,我们的网格表现出广泛的谐振吸收和发射特征,以及荧光线。我们说明了如何通过对观察到的LYα,C II和SI II光谱进行关节建模来帮助更好地限制风质。使用多云的模拟和病毒缩放关系,我们还表明,即使培养基被高度离子化,也有望成为T≈104-10 5 K的气体的忠实示踪剂。发现C II探测与LYα相同的温度范围,而其他金属线仅痕迹冷却器相(T≈104 K)。由于它们的气体不透明度在很大程度上取决于气体温度,入射辐射场,金属性和粉尘耗尽,因此我们要警告光学上的金属线不一定源自低H I柱密度,并且可能不会准确探测Lyman Continuum Continuum Continuum泄漏。
在过去十年中,地球磁层中的航天器测量到的静电电位高达数十 kV 量级。太空观测结果显示太阳系中的自然物体也存在巨大电位。静电放电可能对航天器造成物质损坏和操作干扰。尘埃等自然物体可能受到干扰,其运动受到电磁力的影响。太空中物体的电位由各种充电电流之间的平衡决定。最重要的是等离子体粒子的电荷转移、光电发射和二次电子发射,有时其他充电机制也会起作用。物体的电荷和运动以及局部磁场和电场都会影响电流。电介质表面可能具有表面电位梯度,这可以通过产生势垒来影响电流平衡。这些过程针对太阳系和星际空间中的物体进行了评估。预期的平衡电位范围从电离层的负几十分之一伏到安静磁层和行星际空间的正几伏。然而,在热等离子体(如受扰磁层)中,尤其是在阴影表面上,可能会出现较大的负电位。星际空间中的电位可以是正的也可以是负的,这取决于当地辐射场和等离子体的特性。在已测量过航天器电位的地区,结果通常与这些预期一致。偏差可以归因于偏置或介电表面的影响,或天线等大型结构中的磁感应效应。已经开展了深入的研究工作,以测量材料特性、研究充电和放电过程、将电流平衡建模为真实的航天器配置,并获取太空中的更多数据。已经使用被动方法(例如仔细选择表面材料)和主动方法(例如发射带电粒子束)进行了航天器电位控制实验。该评论最后对充电效应可能发挥重要作用的天体物理应用进行了调查。
为了自主驾驶模拟,早期尝试[8,32,35]部署游戏引擎来渲染图像。它不仅需要耗时的过程来重建虚拟场景,而且还需要以低现实主义的形式产生结果。,用于新型视图Synthesis(NVS)的神经渲染技术,例如神经辐射场(NERF)[21]和3D高斯分裂(3DGS)[14],用于同步,以使照片现实主义的街道视图进行同步。当前的研究[4、10、20、23、28、39、43、47、48、51、59]主要是街道视图合成中面临的两个挑战:无界场景的重建和染色体对象的建模。尽管已经取得了令人兴奋的进度,但在现有作品中尚未很好地探索评估重建质量的关键问题。众所周知,理想的场景仿真系统应具有高质量的自由视线渲染的能力。目前的作品通常采用从vehicle捕获而在训练阶段却看不见的观点(例如图。1),同时忽略了偏离训练观点的小说观点(例如图。1)。处理这些新颖的观点时,呈现质量的降低明显降低,对现有作品的模糊和伪像,如图1。此问题归因于车辆收集的图像的固有约束视图。训练图像通常沿着车辆的行驶方向捕获,并以车辆的车道为中心。由于车辆的快速行驶速度,框架之间的超偏度有限,因此不允许对现场中的物体进行全面的多视觉观察。因此,可以从稀疏视图中将自动驾驶的街道视图综合任务理解为重建问题。
本书涉及统计力学。它的目标是基于单个假设(微域密度矩阵的形式)对平衡系统的统计力学进行演讲,并处理非平衡现象的最重要方面。是基本面,在这里进行了尝试证明统计力学应用的广度和多样性。现代领域,例如重新归一化的群体理论,渗透,运动的随机方程及其在临界动力学中的应用。在可能的情况下首选紧凑的表现;但是,除了了解量子力学知识之外,它不需要其他辅助工具。通过包含所有数学步骤和所有中间计算的完整且详细的表示,使材料尽可能地不可思议。在每章的结尾,提供了一系列问题。可以在第一读中跳过的小节用星号标记;对于理解材料的理解并不重要的辅助计算和备注以小印刷显示。在看来很有帮助的地方,文学意思是给出的;这些绝不是完整的,但应被视为进一步阅读的动机。在每个更高级章节的末尾给出了相关教科书的列表。在第一章中,介绍了概率理论的基本概念以及分布函数和密度矩阵的特性。之后,得出了规范和大规范合奏的密度矩阵。在第2章中,介绍了熵,压力和温度等基本量化的微型集合,并在其基础上进行基础。第三章致力于热力学。在这里,通常的材料(热力学潜力,热力学定律,环状操作等)进行了处理,并特别注意相变理论,对混合物和与物理化学有关的边界区域。第4章介绍了理想量子系统的统计力学,其中包括玻色 - 因斯坦凝结,辐射场和超流体。在第5章中,对实际气体和液体进行处理(自由度的内部度,范德华方程,混合物)。第6章致力于磁性主题,包括磁相变。此外,还提出了相关现象,例如橡胶的弹性。第7章
放射治疗 (RT) 的主要挑战是向肿瘤提供足够高的治疗剂量,同时保持附近器官受到可耐受的剂量,新的治疗方式正在迅速涌现。FLASH 放射治疗提供的治疗剂量比传统 RT(0.05 Gy/s)快几个数量级(≥40 Gy/s),并且已被证明可以降低正常组织发生并发症的可能性,同时提供与传统剂量率相似或更好的肿瘤控制率,减少治疗时间和器官运动相关问题。然而,FLASH RT 的临床实施面临着重大挑战,因为它的要求使得大多数现有的剂量测定设备已过时。碳化硅 (SiC) 的物理特性使其成为一种有趣的辐射剂量测定材料。SiC 的宽带隙降低了热产生电荷载流子的速率,从而与硅相比降低了漏电流和噪声。特别值得注意的是,SiC 每 mGy 沉积的信号产量(4H-SiC 为 425 pC/(mGy · mm3))低于硅。这使得 SiC 成为超高剂量脉冲辐射场或直接光束监测剂量测定的良好选择,其中半导体中的瞬时剂量沉积很大,可能会使传统硅二极管饱和。此外,SiC 具有更高的位移能量阈值,因此辐射硬度高于硅。如今,SiC 技术已经成熟,高质量基板可达 200 毫米,可广泛使用。在本次演讲中,我们将介绍在 IMB- CNM 设计和制造的新型碳化硅 PiN 二极管,旨在应对 FLASH RT 的技术挑战。在 PTB(德国)使用 20 MeV FLASH 电子束进行的首次表征中,这些二极管显示出其适用于高达每脉冲 11 Gy(4 MGy/s)剂量的相对剂量测定,且剂量测定性能可与商用金刚石剂量计相媲美 [doi:10.1088/1361-6560/ad37eb]。在 CMAM(西班牙)使用 7 MeV 质子测试了带有 FLASH 质子束的 SiC 二极管的性能,结果显示它们与剂量率具有良好的信号线性度,并且每脉冲剂量至少为 20 Gy 时响应可重复。最后,在 CNA(西班牙)使用高 LET、强脉冲质子束研究了二极管的抗辐射性。二极管的灵敏度在 1 MeV 质子中以 -1.34%/kGy 的初始速率逐渐下降,并且仅在接近 750 kGy 的剂量下才稳定下来。然而,即使累积剂量为几 MGy,每脉冲剂量的线性响应在很宽的剂量率范围内也能保持。所有这些测量都是在无需外部施加电压的情况下进行的。总之,在 IMB-CNM 制造的碳化硅二极管是硅和金刚石剂量计的真正替代品,适用于需要精确实时相对剂量测定的广泛应用,要求快速响应和长期稳定性。
从任意观点以及适应不断变化的拓扑结构的表面重构。涉及人类或机器人相互作用与物体的场景需要动态适应分裂,合并或变形的表面。热热,下游应用,例如视觉效果和无标记运动捕获,从不依赖模板的情况下跟踪持久区域的能力显着。因此,方法必须有效地处理这些拓扑更改,以确保高质量的渲染和准确的重建,同时还要维护对现有表面的同意跟踪。经典方法主要依赖于网格和tex曲线图,这些图提供了合理的外观,但重大取决于网格分辨率。他们常常无法准确地确定细节和观察依赖性效果。al-尽管这些网格表示可以进行一定程度的跟踪,但它们努力处理重大的拓扑变化,需要新的关键帧以适应ma-jor变换。神经辐射场的出现(NERF)[28]在静态[1,46]和dy-namic场景[17,30]的外观和新型综合方面有了显着改善。使用Marting Cubes [37,44]可以从隐式签名的距离功能(SDF)得出表面,但除非使用了不足的模板,否则它们缺乏一致的跟踪。最近,出现了3D高斯脱落(3DGS)[20],具有明确的纹理代表,在外观上与NERF竞争,同时实现了更有效的效果。这些高斯人与网格面一起移动,以表示移动和变形的对象。其明确表示有助于跟踪,并为此开发了几种技术[26,50]。然而,准确的动态表面重建仍然是一个挑战,并且在现有表面的跟踪与引入新的表面保持平衡被证明很困难。为了应对这些挑战,我们提出了GSTAR,该方法能够重建光真逼真的外观和准确的表面几何形状,并随着拓扑变化而保持一致的跟踪。GSTAR利用多视图盖,并将网眼与绑定的高斯人结合在一起,与高斯表面相结合。当新的表面变得可见时,新的高斯人会产生,并且网格拓扑更新。适应性网格提供了时间一致,准确的几何形状,而高斯人则带来了逼真的外观。这个问题很困难,因为总会有一个折扣。可以通过固定的托架或模板[24,50]更轻松地跟踪的方法倾向于在新的姿势或变形下降低外观和几何形状的质量。相反,过度拟合静态场景的方法[8,14,16]缺乏时间一致性或错过新的框架详细信息。GSTAR通过尽可能多地跟踪面孔来解决这一权衡
1。Jaeah Lee,Changwoon Choi,Young Min Kim和Jaesik Park,Livestroke:CVPR中的视频中抽象3D动作(2025)。2。gwangtak bae *,Changwoon Choi *,Hyeongjun Heo,Sang Min Kim和Young Min Kim,I2-Slam:ECCV中强大的影像现实主义密度大满贯的反倒成像过程(2024)。3。Changwoon Choi,Jaeah Lee,Jaesik Park和Young Min Kim,3Doodle:Siggraph(ACM TOG)(2024)中的3D笔触的物体的紧凑型抽象。4。sang赢得了Im*,Dongsu Zhang*,Jeong Hyun Han,Ryeong Myeong Kim,Changwoon Choi,Young Min Kim **和Ki Tae Nam **,研究了使用生成的细胞自动机研究金的性形态,在自然材料中(2024)。5。Changwoon Choi *,Juhyeon Kim *和Young Min Kim,IBL-NERF:Pacific Graphics(计算机图形论坛)(2023)中的神经辐射场的基于图像的照明公式。6。Sang Min Kim,Changwoon Choi,Hyeongjun Heo和Young Min Kim,在Pacific Graphics(计算机图形论坛)(2023年)中,适用于健壮的小说合成的色彩转换模块(2023年)。7。Junho Kim,Changwoon Choi,Hojun Jang和Young Min Kim,LDL:ICCV中的全景定位的线距离功能(2023)。8。Changwoon Choi,Sang Min Kim和Young Min Kim,CVPR(2023)的平衡球形网格,用于以中心的视图合成。9。Junho Kim,Hojun Jang,Changwoon Choi和Young Min Kim,CPO:将强大的Panorama更改为ECCV(2022)的Point Cloud Netization。10。11。12。( *同样贡献。)语言和技能Dongsu Zhang,Changwoon Choi,Inbum Park和Young Min Kim,ICLR的概率隐式现场完成(2022年,Spotlight)。 Junho Kim,Changwoon Choi,Hojun Jang和Young Min Kim,Piccolo:ICCV(2021)的Point Cloud-point以云为中心的OM-中性定位。 Dongsu Zhang,Changwoon Choi,Jeonghwan Kim和Young Min Kim在ICLR(2021)中学习具有生成性蜂窝自动机的3D形状。Dongsu Zhang,Changwoon Choi,Inbum Park和Young Min Kim,ICLR的概率隐式现场完成(2022年,Spotlight)。Junho Kim,Changwoon Choi,Hojun Jang和Young Min Kim,Piccolo:ICCV(2021)的Point Cloud-point以云为中心的OM-中性定位。Dongsu Zhang,Changwoon Choi,Jeonghwan Kim和Young Min Kim在ICLR(2021)中学习具有生成性蜂窝自动机的3D形状。Dongsu Zhang,Changwoon Choi,Jeonghwan Kim和Young Min Kim在ICLR(2021)中学习具有生成性蜂窝自动机的3D形状。
阿诺德上尉在马萨诸塞州长大,通过海军后备军官训练团进入康奈尔大学 (BS, 1992)。完成核潜艇军官训练后,他在 USS L. MENDEL RIVERS (SSN 686) 上服役,获得了潜艇海豚和核工程师认证,同时完成了两次部署和几项具有国家意义的任务。他转入核推进训练部,这是一座改装的潜艇反应堆工厂,用于核士兵和军官训练。作为一名值班工程师,他领导反应堆训练、运行和维护,并计划、模拟和指导高辐射场的维护。他转入海军预备役,同时担任福特汽车公司的系统设计工程师,之后重返现役,并于 2006 年获得制服大学医学博士学位。他完成了家庭医学实习,然后完成了水下医学军官培训,并以优异成绩毕业于潜水医学和水下医学专业。在担任关岛第十五潜艇中队医疗官期间,他获得了潜艇医疗官和水面医疗部门官员资格。他支持母港和部署潜艇、特种作战干甲板掩体行动和潜水伤员的高压氧治疗。2012 年,他完成了家庭医学住院医师培训,担任住院总医师。住院医师培训结束后,他在意大利那不勒斯美国海军医院工作,担任医务人员执行委员会成员、慢性疼痛委员会主席和分支诊所初级保健部门负责人。在急诊科执业期间,他担任过部门助理负责人。2015 年至 2018 年,阿诺德上尉回到杰克逊维尔海军医院任教,并领导海军最大的家庭医学诊所,协调 100 多名员工照顾 24,000 名患者。他完成了人道主义部署,提供医疗服务和外国住院医师培训。他参与了海军综合疼痛管理计划,开发了实用的阿片类药物和患者监测程序,并为 700 多名初级保健提供者完成了 12 次培训现场访问。从 2018 年到 2023 年,他担任军医大学教师。除了支持招生委员会和机构审查委员会外,他还指导了教师发展计划,这是一项针对军事家庭医学住院医师的沉浸式教学体验。作为多系统模块主任,他在临床实习之前管理了最后的教学模块。他完成了卫生职业教育硕士学位和医学编辑奖学金。他是沃尔特里德国家军事医疗中心的副主治医师,并担任海军家庭医学专业负责人。自 2023 年 7 月起,Arnold 上尉担任海军水下医疗研究所负责人。Arnold 上尉是家庭医学委员会认证专家,拥有 80 多篇出版物和演讲,并曾多次获得教育奖项。他担任联合健康学院和医学院家庭医学系和军事与急诊医学系副教授。他是《美国家庭医生》的助理编辑和美国家庭医生学会会员。他的军事勋章包括联合功绩服务医疗奖章、四枚海军和海军陆战队嘉奖奖章、两枚联合服务成就奖章和三枚海军和海军陆战队成就奖章。