背景:同种异体造血干细胞移植(Allo-HSCT)是用于侵袭性血液学恶性肿瘤的有效治疗方法。但是,患上移植物抗宿主病(GVHD)的风险是Allo-HSCT的重大障碍。GVHD是一种使人衰弱的状况,具有高死亡率,当前的GVHD治疗选择受到限制,皮质类固醇是标准治疗方法。然而,类固醇的不良影响使长时间使用变得困难,因此需要开发更安全的疗法。IL-35产生的B细胞(I35-BREGS)已成为自身免疫性疾病期间免疫的关键调节剂。在这项研究中,我们研究了I35-BREGS免疫疗法是否可以抑制和减轻GVHD。方法:我们对经历了同种HSCT的小鼠进行了单一剂量的I35-BREG(1.5×10 6),并在转移后90天内监测了GVHD小鼠的疾病严重程度以及GVHD小鼠的存活。我们发现i35-bregs分泌含有膜结合的IL-35(I35-外观)的外泌体,并研究了是否可以将EX-VIVO产生的i35-外病体用作GVHD的独立免疫疗法。I35-BREG诱导的细胞因子或检查点蛋白(PD-1,LAG-3,CTLA-4)的表达。通过接近连接测定法(PLA),免疫组织化学/共聚焦显微镜和α倍折叠式培物建模的表征是通过接近连接测定法(PLA)的表征。与IL-35是分泌的细胞因子的观点相反,我们在这里表明i35-bregs通过膜结合的IL-35减轻GVHD,并通过分泌i35-效果。结果:单剂量为1.5×10 6 I35-BREG降低了GVHD的严重程度和延长的GVHD存活率,超过70%的I35-BREG处理的小鼠在转移后第90天超过第90天,同时观察到在第90天,同时观察到100%的死亡率,在未经培训的小鼠中,由45日在未经培养的小鼠中。此外,i35-BREGS或EX-VIVO产生的i35-陈述诱导同种反应性的T细胞,以上调与T细胞疲劳和厌食的检查点蛋白质,并抑制同种反应性反应,并抑制抑制GVHD的感染性耐受性机制。重要的是,I35-BREGS或I35-诊断物通过增加涂有免疫抑制i35-示例的旁观者淋巴细胞来抑制GVHD。结论:这项研究表明,I35-BREG和I35-诊断在缓解GVHD中起着至关重要的作用。I35-BREG和I35-异型体免疫疗法的结合可能是治疗GVHD和其他炎症性疾病的有效策略。
Sara Gouarderes、Layal Doumard、Patricia Vicendo、Anne-Françoise Mingotaud、Marie-Pierre Rols 等人。电穿孔不会直接影响人类真皮成纤维细胞的增殖和迁移特性,而是通过分泌组间接影响。生物电化学,2020 年,134,第 107531 页。�10.1016/j.bioelechem.2020.107531�。�hal-02560967�
摘要 目的 在通过脑机接口操纵假肢的过程中,皮质表面的分布式微刺激可以有效地向受试者提供反馈。这种反馈可以向假肢使用者传达大量信息,可能是获得假肢的精确控制和实施的关键。然而,到目前为止,人们对解码此类模式的生理限制知之甚少。在这里,我们旨在测试一种旋转光遗传反馈,该反馈旨在有效地编码假肢中使用的机器人执行器的 360° 运动。我们试图评估通过闭环脑机接口控制假肢关节的小鼠对其的使用情况。 方法 我们测试了小鼠优化虚拟假肢关节轨迹的能力,以解决奖励性伸手任务。它们可以通过调节初级运动皮层中单个神经元的活动来控制关节的速度。在任务期间,投射到初级体感皮层上的模式化光遗传刺激不断向小鼠传递有关关节位置的信息。主要结果 我们表明,小鼠能够在任务的主动行为环境中利用连续、旋转的皮质反馈。小鼠通过更频繁地检测奖励机会,以及通过将关节更快地移向奖励角区,并在奖励区停留更长时间,实现了比没有反馈时更好的控制。控制关节加速度而不是速度的小鼠无法改善运动控制。 意义 这些发现表明,在闭环脑机接口的背景下,可以利用具有优化形状和拓扑的分布式皮质反馈来控制运动。我们的研究直接应用于机器人假肢中经常遇到的旋转关节的闭环控制。 1. 简介
PD-1/PD-L1/PD-L2 免疫检查点在调节免疫反应中起着关键作用,其功能障碍与癌细胞的免疫逃避有关。冷大气等离子体 (CAP) 已成为一种有前途的癌症治疗方式,具有调节免疫检查点的潜力。本研究采用分子动力学 (MD) 模拟来研究 CAP 诱导的氧化对 PD-1 与其配体 PD-L1 和 PD-L2 之间相互作用的影响。我们模拟了不同氧化水平下的 PD-1/PD-L1 和 PD-1/PD-L2 复合物。使用 Vienna PTM 2.0 在线服务器修改配体相互作用位点内的关键残基。伞状采样和其他 MD 分析表明,增加氧化水平会导致 PD-1 与 PD-L1 和 PD-L2 之间的结合亲和力减弱。这些发现表明 CAP 可能为增强抗肿瘤免疫提供一种新策略。这项计算研究为 CAP 影响免疫调节的分子机制提供了宝贵的见解,并强调了其在癌症免疫治疗中的潜力。
尽管在首线化疗中加入了免疫检查点阻断,小细胞肺癌 (SCLC) 患者的预后仍然很糟糕。对于生长抑素受体 (SSTR) 过表达的 SCLC 亚组,放射性药物治疗 (RPT) 可能是未来有效的治疗选择。方法:在这里,我们介绍了一个接受过大量治疗的 IV 期 SCLC 患者的病例,该患者对 SSTR 导向的 RPT 显示出异常反应。进行了一项全面的转化检查,包括在治疗期间的不同时间点以及特别是对示踪剂摄取不一致的病变进行组织病理学、免疫组织化学和分子病理学分析。结果:除了对 RPT 有良好的反应外,还可以识别出治疗期间克隆动力学的有趣迹象,最重要的是,某些病变的 SSTR 下调是逃避 SSTR 导向的 RPT 的潜在机制。结论:这项独特的研究从临床-分子角度理解了小细胞肺癌的新治疗模式,可能为未来的治疗设计提供基础。
摘要:前脑是脊椎动物中枢神经系统最复杂的区域,其发育组织存在争议。我们使用亲脂性染料和 Cre 重组谱系追踪对胚胎鸡前脑进行了命运映射,并建立了大脑生长的 4D 模型。我们通过多重 HCR 揭示了归因于祖细胞区域的各向异性生长的模块化模式。形态发生以朝向眼睛的方向生长、丘脑前部和背侧端脑的更等长扩张以及腹侧细胞向前移动到下丘脑为主。在鸡中进行的命运转换实验以及在鸡和小鼠中进行的比较基因表达分析支持将下丘脑置于从端脑延伸到丘脑内界带 (ZLI) 的结构的腹侧,背腹轴在 ZLI 的底部变形。我们的研究结果对广为接受的前脑组织前体模型提出了挑战,并提出了一种替代的“三部分下丘脑”模型。
大型语言模型(LLMS)研究的加速度为评估生成的文本开辟了新的可能性。尽管LLM是可扩展和经济的评估者,但这些评估者的可靠性仍然不足。在法官将LLM的提示限制为单一用途以获得最终评估决定时,在元评估中进行了元评估。 然后,他们计算LLMS的输出和Human标签之间的一致性。 这缺乏理解LLM的评估能力的解释性。 鉴于这一挑战,我们提出了DNA-eval,它将评估过程分解为基于教学实践的分解和聚集阶段。 我们的实验表明,它不仅为LLMS评估的评估提供了一个更容易解释的窗口,而且还可以在各种元评估台上的不同LLM中改善高达39.6%的窗口。在元评估中进行了元评估。然后,他们计算LLMS的输出和Human标签之间的一致性。这缺乏理解LLM的评估能力的解释性。鉴于这一挑战,我们提出了DNA-eval,它将评估过程分解为基于教学实践的分解和聚集阶段。我们的实验表明,它不仅为LLMS评估的评估提供了一个更容易解释的窗口,而且还可以在各种元评估台上的不同LLM中改善高达39.6%的窗口。
分子胶代表了一种创新的药物类别,可实现以前不可能的蛋白质蛋白质相互作用,但是它们的理性设计仍然具有挑战性,这一问题准确的三元复合物建模可以显着解决。在这里,我们提出了YDS-Ternoplex,这是一种新型的计算方法,可以通过在推断过程中纳入增强的采样电感偏置来准确预测分子胶水介导的三元复合物结构,从而增强AlphaFold 3型模型。我们在五种不同的测试用例中展示了YDS-andOplex的功能,包括基于E3连接酶的系统(VHL:CDO1和CRBN复合物,具有MTOR-FRB,NEK7和VAV1-SH3C)和非E3连接酶复合物(FKBP12:MTOR-FRB)。与实验结构相比,该模型的RMSD值低至1.303Å,可实现出色的准确性,并成功预测了训练数据中不存在的新型蛋白质蛋白接口。值得注意的是,在FKBP12:MTOR-FRB情况下,YDS-Ternoplex正确预测了一种新颖的接口配置,而不是默认为训练数据中存在的已知相互作用,表明了强大的概括能力。我们的结果表明,通过电感偏差对推理过程的战略增强可以显着提高三元复合物预测的准确性,从而有可能加速以前不可用靶标的分子胶治疗剂的发展。
许多政府高级官员和国际专家提供了意见并审查了该报告的初步草案。他们的评论和建议具有很大的价值。包括:乌克兰能源部的同事; Jinsun Lim(亚洲开发银行); Frederikke Laursen和Pernille Hagedorn-Rasmussen(丹麦能源局); Olena Pavlenko(Dixi Group); Myhailo Krutsyak(DTEK); Anna Petrus(Eu4energy);亚历山大·安东尼(Alexander Antonyuk)(欧洲投资银行); Christoph Winkler(JülichSystems Analysis,ForschungszentrumJülich);苏珊·尼斯(Susanne Nies)(乌克兰绿色交易);海伦娜·杰拉德(Helena Gerard)(Vito); Borys Dodonov(基辅经济学院); Ihor Horovykh(国家能源和公用事业监管委员会); Iryna Doronina(慕尼黑技术大学);克里斯托弗·梅茨(英国政府); Scott Greenip,Juhani M Platt,Erik J Magdanz和Geoff Pyatt(美国国务院); Jan Petter Nore(Norad and Nord University);
1988年,SGLT-2通过同源性筛选被鉴定(Santer and Calado,2010;Vallon and Thomson,2017)。据报道,SGLT-2介导90%以上的肾脏葡萄糖重吸收(Hummel等,2011)。SGLT-2抑制剂通过阻止近曲小管葡萄糖重吸收来降低血糖,从而起到抗糖尿病的作用,并通过抑制SGLT-2蛋白来促进肾脏葡萄糖排泄(Abdul-Ghani等,2011)。对于糖尿病的治疗和控制,有许多治疗和靶向技术可用(Nauck 等人,2021 年),其中之一是通过 SGLT-2 抑制肾脏对葡萄糖的重吸收,这是一种帮助 2 型糖尿病患者降低血糖的新方法。在治疗 2 型糖尿病时,SGLT-2 抑制剂是一个很好的选择,因为它们可以降低血糖水平而不会损害胰岛素的产生(Miller 和 Shubrook,2015 年)