光接收器的性能受到互补金属氧化物半导体 (CMOS) 运算放大器 (op-amps) 设计的显著影响,这种设计受益于 CMOS 技术的进步,可降低噪声和功耗。本研究概述了低噪声 CMOS 运算放大器的设计过程,旨在实现高质量的信号输出,这对于必须尽量减少噪声干扰的专业音频设备和精密仪器等应用至关重要。通常,降低噪声的努力会导致速度降低和功耗增加。因此,实现性能参数的最佳平衡至关重要,噪声水平是主要关注点。提出了一种有效的设计方法来提高运算放大器的整体性能。采用分析方法来深入了解设计,优先考虑噪声性能。设备尺寸和偏置条件是根据噪声水平、带宽、信号摆幅、斜率和功耗等几个因素确定的。已经开发了一个两级运算放大器来验证所提出的设计方法。通过该方法得出的器件参数与使用 MATLAB 生成的模拟结果非常吻合,强调了设计过程的准确性和有效性。
本系统综述全面调查了应用经颅磁刺激和经颅电刺激顶叶和非顶叶区域来研究符号算术处理的神经基础的研究。所有研究结果均根据数字处理的三重代码模型 (TCM) 的三个假设汇编而成。共确定了 37 篇符合条件的稿件(33 篇来自健康参与者,4 篇来自患者)。其结果与 TCM 的第一个假设大致一致,即顶内沟既保存量值代码,又参与需要数值操作的运算,如减法。然而,大量异质性结果与 TCM 的第二个假设相冲突,即左侧角回用于算术事实检索,如检索死记硬背的乘法结果。对 TCM 的第三个假设的支持也有限,即后顶上小叶参与心理数轴上的空间运算。此外,对中医所指脑区以外的脑区进行刺激的结果显示,双侧缘上回参与在线计算和检索,左颞叶皮层参与检索,双侧背外侧前额叶皮层和小脑参与在线计算认知要求较高的算术问题。总体结果表明,多个皮层区域有助于算术技能。
自适应变分量子模拟算法使用来自量子计算机的信息来动态创建给定问题汉密尔顿函数的最佳试验波函数。这些算法中的一个关键因素是预定义的运算符池,从中构建试验波函数。随着问题规模的增加,找到合适的池对于算法的效率至关重要。在这里,我们提出了一种称为运算符池平铺的技术,该技术有助于为任意大的问题实例构建问题定制的池。通过首先使用大型但计算效率低下的运算符池对较小问题实例执行自适应导数组装问题定制拟定变分量子特征求解器 (ADAPT-VQE) 计算,我们提取最相关的运算符并使用它们为更大的实例设计更高效的池。我们在这里对一维和二维的强相关量子自旋模型演示了该方法,发现 ADAPT 会自动为这些系统找到一个高效的拟定。鉴于许多问题(例如凝聚态物理学中出现的问题)具有自然重复的晶格结构,我们预计池平铺方法将成为一种适用于此类系统的广泛适用技术。
引言:经典计算是一种极为成功的信息处理范式。计算的成功很大程度上可以归因于计算能力的快速提升,而计算能力的快速提升得益于由经典不可逆门操作构建的底层电路的小型化(参见图 1(a))。如今,经典处理器门数的指数增长已达到基本物理极限 [1]。在不断追求提高计算能力的过程中,人们正在探索多种替代技术 [2–13]。作为一种与经典信息处理正交的方法,量子计算最近受到了广泛关注。在此方面,人们已经取得了实质性进展,首次展示了量子纠错等基本要素 [14–19]。这可以归因于新颖、先进的提案以及成熟技术的持续改进 [20–24]。这些进步使量子计算更接近于完全单一演化到输出状态的理想。然而,在某些算法中,非单一操作需要与单一量子门结合使用。其中包括量子机器学习、量子优化和模拟算法,这些算法被认为是量子计算最有前途的近期应用之一。
OPA4H199-SEP 建立在现代放大器技术之上,使我们能够在输入端启用全共模范围,这对于监控电源轨上的电压至关重要。在监控这些电压时,如果放大器与高分辨率 ADC 配对,则失调电压对于确保通过信号链传输精确电平至关重要。OPA4H199-SEP 的失调电压为 0.895 mV (2) ,使其成为通用放大器产品组合中最精确的航天级放大器。该放大器的输出电流也具有 75 mA 的顶级性能,可用于驱动负载处的传感器,使其成为 TI 航天级通用放大器产品组合和放大器行业中输出电流最高的运算放大器。
当前用于对噪声量子处理器进行基准测试的方法通常测量平均错误率或过程保真度。然而,容错量子误差校正的阈值是以最坏情况错误率(通过钻石范数定义)表示的,这可能与平均错误率相差几个数量级。解决这种差异的一种方法是使用随机编译 (RC) 等技术对量子门的物理实现进行随机化。在这项工作中,我们使用门集断层扫描对一组双量子位逻辑门进行精确表征,以研究超导量子处理器上的 RC。我们发现,在 RC 下,门错误可以通过随机泡利噪声模型准确描述,而没有相干误差,并且空间相关的相干误差和非马尔可夫误差受到强烈抑制。我们进一步表明,对于随机编译的门,平均错误率和最坏情况错误率相等,并且测量到我们的门集的最大最坏情况误差为 0.0197(3)。我们的结果表明,当且仅当门是通过调整噪声的随机化方法实现的,随机化基准是验证量子处理器的错误率是否低于容错阈值以及限制近期算法的失败率的可行途径。
根据旋转变压器的特性,驱动运放需要有以下特性: • 旋转变压器的励磁原边线圈通常是有很低的DCR ( 直流电阻),通常小于100Ω,因此需要有较强的电流 输出能力才可以驱动线圈,最高至200mA。 • 为了保证的精度以及线性度,在旋转变压器的应用中需要具备较高的SR(压摆率Slew Rate)。 • 旋转变压器的常见激励方式为差分推挽输出,对放大器要求较宽的带宽以及较高的开环增益,以确保信 号不失真。 • 汽车应用EMI 环境复杂,为了保证励磁功率放大电路不被干扰,放大电路需要具备一定的EMI 抑制能力。 • 作为高功率驱动级,需要具备限流和过温关断功能,保证系统的可靠性和鲁棒性。 • 传统的解决方案是利用通用运放和分立三极管搭建高输出电流,电路复杂可靠性低,且并且难以集成热 关断和限流保护等功能。NSOPA240X 运算放大器具有高电流输出能力,最大可支持400mA 的持续电流 输出。并集成了过温关断,限流保护等安全功能,满足各类旋转变压器驱动的需求。
在本研究中,主要目标是设计单通道运算放大器 IS-OU1 的宏模型,其主要特点如下: 15 V 电源电压、失调电压 7 mV、低电源电流 ~1.3 mA、斜率 ~0.4 V/ s、开环增益 ~100-110 dB、增益带宽积 ~0.7-1 MHz、输出电压摆幅 14 V。为了使用 SPICE 对运算放大器进行建模,选择了基于 npn 型双极晶体管的非线性运算放大器模型 [3, 5]。运算放大器的等效电路如图 1 所示。然后,计算电路中运算放大器元件的参数,使其与运算放大器特性相适应,并将其写成子电路,如图 2 所示。宏模型可以用作 Micro-Cap 12 模型编辑器中的 .SUBCKT 命令的子电路,作为 SPICE 电路程序 [6, 7],这使我们能够获得 IS-OU1 运算放大器的 SPICE 宏模型。之后,为了测试运算放大器,将获得的宏模型作为 IS-OU1.lib 库文件添加到 Micro-Cap 12 程序库中。