介绍了一种使用简单单级辅助放大器的新型增益提升折叠共源共栅运算放大器。所提出的辅助放大器的设计方式是,无需使用共模反馈网络,即可获得适当的输入和输出直流共模电压。辅助放大器的输入端由耦合电容器和浮栅 MOS 晶体管隔离。因此,直流输入电压电平限制已被消除。辅助放大器的输出端也使用了二极管连接的晶体管,使输出电压电平保持在所需的水平。与更复杂的放大器相比,简单的单级辅助放大器对主放大器施加的极点和零点更少,而且功耗也更低。0.18μm CMOS 技术的仿真结果显示直流增益增强了约 20 dB,而输出摆幅、斜率、稳定时间、相位裕度和增益带宽几乎与之前的折叠共源共栅设计相同。
摘要:铁电电容器(FeCAP)具有工艺兼容性高、可靠性高、超低编程电流和操作速度快等特点,是传统易失性和非易失性存储器的良好替代品,在存储、计算和内存逻辑领域也具有巨大的潜力。尽管如此,在 FeCAP 器件中实现逻辑和存储的有效方法仍然缺乏。本研究提出了一种基于电荷共享功能的 1T2C FeCAP 原位按位 X(N)OR 逻辑。首先,利用 1T2C 结构和两步写回电路,以比先前工作更低的复杂度实现了无损读取。其次,在 X(N)OR 操作期间采用了双线激活的方法。验证结果表明,提出的基于 1T2C FeCAP 的按位逻辑运算的速度、面积和功耗都有显著提高。
整个OP放大器的完整布局的面积为24960 UM 2,如图2所示。布局由三个主要块组成。第一个块是由M1,M2,M3,M4和M5组成的电流镜。此块如图3所示,区域为1386 UM 2。下一个块是由M6,M7,M8和M9组成的差分放大器。该块如图4所示,总面积为1027 UM 2。图4也显示了由CP和RP组成的米勒补偿电路。由于CP的电容较大,两个平行的电容器,宽度和长度为30UM,用于实现必要的电容值。最终块如图5所示,由M10和M11组成,除M12和RS之外,它们构成了共同的源放大器,而M12和RS构成了常见的排水放大器。该块的总面积为3841 UM 2。
由于电信、医疗、计算机和消费电子等所有市场领域对便携式应用的更小尺寸和更长电池寿命的需求不断增长,低压低功耗硅片系统的发展趋势日益增长。运算放大器无疑是模拟电子电路中最有用的设备之一。运算放大器的构建复杂程度各不相同,可用于实现从简单的直流偏置生成到高速放大或滤波等功能。仅需少量外部元件,它就可以执行各种模拟信号处理任务。运算放大器是当今使用最广泛的电子设备之一,被用于各种消费、工业和科学设备中。运算放大器,通常称为运算放大器,是模拟电子电路中使用最广泛的构建模块之一。运算放大器是一种线性器件,它不仅具有理想直流放大所需的几乎所有特性,还广泛用于信号调节、滤波和执行数学运算,如加、减、积分、微分等。运算放大器通常是一个 3 端器件。它主要由一个反相输入端(在运算放大器符号中用负号(“-”)表示)和一个同相输入端(用正号(“+”)表示)组成。这两个输入端的阻抗都非常高。运算放大器的输出信号是两个输入信号之间的放大差,或者换句话说,是放大的差分输入。通常,运算放大器的输入级通常是差分放大器。运算放大器是一种具有相当高增益的直流耦合差分输入电压放大器。在大多数一般
摘要 本文研究了量子态可能具有的各种被认为特有的“量子”性质(纠缠、非局域性、可控性、负条件熵、非零量子不一致性、非零量子超不一致性以及语境性)及其对立面。本文还在以下意义上考虑了它们的“绝对”对应物:如果给定状态在任意幺正变换后仍然具有给定属性,则它绝对地具有该属性。总结了所列属性之间以及它们的绝对对应物之间的已知关系。证明了唯一绝对具有零量子不一致性的两量子比特状态是最大混合态。最后,讨论了有关“经典”和“量子”这两个术语的概念问题。
最小化可编程逻辑器件和专用处理器微电子器件上离散信号频率选择数字算法硬件和软件实现的硬件成本[1]。这些任务可以而且应该通过最少算术乘法运算的级联数字滤波方法和不执行算术乘法运算的多频带数字滤波(MDF)方法来解决[2],[3],[4]。最少算术乘法运算的计算级联数字滤波算法可以基于幅频特性(AFC)具有对称性的NDF、基于Walsh NDF或基于齐次和三角数字滤波器来实现[5]。没有算术乘法运算的计算MDF算法可以而且应该在低位系数的NDF基础上、在低位系数的差分数字滤波器(DDF)基础上、或在整数系数的DDF基础上实现[6],[7]。对于采样周期为 T 的 MDF 复信号 {х(nТ)},使用低通数字滤波器 (LDF) 的此类算法,仅需在 𝑛ൌ0,1,2…𝑁െ1 处添加和移位其第 n 个时间样本即可执行信号的 N 点离散傅里叶变换 (DFT) [8]。本研究的目的是比较分析离散信号的频率选择数字方法,以构建其无需算法乘法运算的算法,并确定在不执行算术乘法运算的情况下将此类方法用于离散信号的多级 DFT 的必要和充分条件 [9],[10]。该研究使用了具有最少数量的算法乘法运算的级联数字滤波算法和不执行算法乘法运算的 MDF 的计算程序 [11],[12]。此类算法的比较分析结果以及硬件和软件建模已经证明并减少了硬件
第二级 第二级或中间级由 Q 16 、 Q 17 、 Q 13 B 和两个电阻器 R 8 和 R 9 组成。晶体管 Q 16 充当射极跟随器,从而使第二级具有高输入电阻。这最大限度地减少了输入级的负载并避免了增益损失。此外,添加具有 50kΩ 发射极电阻的 Q 16(类似于 Q 7 和 R 3 )可增加第一级的对称性,从而提高其 CMRR。晶体管 Q 17 充当共射极放大器,发射极中带有 100Ω 电阻。其负载由 pnp 电流源 Q 13 B 的高输出电阻与输出级的输入电阻并联组成(从 Q 23 的基极看)。使用晶体管电流源作为负载电阻(有源负载)可以获得高增益,而无需使用大电阻,因为大电阻会占用很大的芯片面积并需要很大的电源电压。
六、 本服务采用线上申请方式,申请人应于申请表中选取服务种類、數量及使用时间等,经审核通过后,本中心依核准起始日期启动服务,并将核准通知、使用明细及费用帐单,以电子邮件或纸本方式送交使用者。使用者应于收到通知后完成缴费或储值足额。未完成缴费者,即停止服务, 收回使用权限。 6 、 The application process of the Service is conducted online. The applicant must specify the type, quantity, and duration of the Service in the application form. Once it is reviewed and approved, the Center activates the Service on the established start date. The approval notification, details of the Service, and the bill will be sent to the user by either email or the paper form. The user has to complete the payment upon receipt of the notification either by making direct payment or using the fund in the user account in order to continue using the Service. Failure to complete the payment, the Service will be discontinued and the access right is revoked.
摘要 - 本文介绍了运算跨导放大器 (OTA) 的设计概念。该 OTA 的设计和仿真采用 0.18μm CMOS 工艺。该 OTA 的偏置电压为 1.8,电源电压为 1.8 V。该 OTA 的设计和仿真是使用 CADENCE Spectere 环境和 UMC 0.18μm 技术文件完成的。该 OTA 的仿真结果表明,开环增益约为 71 dB,GBW 为 37 KHz。该 OTA 的 CMRR 为 90 dB,PSRR 为 85 dB。该 OTA 的功耗为 10 mW,斜率为 2.344 V/µsec。关键词 - OTA、Cadence、CMRR、PSRR、功耗、CMOS IC 设计。1. 简介由于 VLSI 技术的最新发展,晶体管的尺寸减小,电源也减小了。 OTA 是大多数具有线性输入输出特性的模拟电路的基本构建块。OTA 广泛应用于神经网络、仪表放大器、ADC 和滤波器电路等模拟电路中。运算跨导放大器 (OTA) 与传统运算放大器基本相似,两者都具有差分输入。OTA 与传统运算放大器之间的基本区别在于,OTA 的输出为电流形式,而传统运算放大器的输出为电压形式。