使用脑电图信号的认知载荷识别(CLR)近年来经历了显着的进步。但是,当前的载荷范式通常依赖于简单的认知任务,例如算术计算,无法充分复制现实世界情景和缺乏适用性。本研究随着时间的推移探讨了模拟的飞行任务,以更好地反映运行环境并研究多个负载状态的时间动态。36名参与者以执行模拟飞行任务,而低,中和高的认知负荷水平不同。在整个实验中,我们从三个课程,前后静止状态的脑电图数据,主观评分和客观绩效指标中收集了脑电图负载数据。然后,我们采用了几种深卷卷神经网络(CNN)模型,利用RAW EEG数据作为模型输入,以六个分类设计评估认知负载水平。研究的关键发现包括(1)静止状态和疲劳后脑电图数据之间的显着区别; (2)与更复杂的CNN模型相比,浅CNN模型的出色性能; (3)随着任务的进行,CLR的时间动态下降。本文为在不同个体的复杂模拟任务中评估认知状态的潜在基础。
简介 数字处理能力的成本以及固态功率转换的成本正在不断下降。因此,电子设备越来越多地用于涉及安全、安全相关和安全关键的应用中,尤其是在工业、商业、医疗和运输控制和自动化应用中。这些电子设备的准确性和可靠性是功能安全的一个问题。所有电子技术在其运行环境中受到电磁 (EM) 干扰时,本质上都容易出现不准确、故障甚至永久性损坏。现代电子设备中硅片特征的不断缩小使其功能更强大、成本更低 - 但这种缩小及其相关的较低工作电压使设备更容易受到电磁干扰 (EMI)。由于数字、开关模式和无线技术的使用日益广泛,环境中电磁干扰的强度和频率范围一直在恶化。再加上电子设备对 EMI 的敏感性不断增加,电子设备的可靠性本身正在下降,这对功能安全产生了重要影响。EMC 标准和法规围绕频谱控制问题而发展,并且(一般而言)不试图解决安全问题。安全标准和法规通常对 EMI 相关问题的覆盖面很差。因此,在涉及安全的/相关的/关键的系统中采用电子设备的制造商几乎没有标准和法规来指导他们,并且
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文将讨论生成和分析测量解决方案;特别是哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
在日本,自 2009 年起逐步引入上网电价制度后,各种运营商开始建设公用事业规模的太阳能发电厂。截至 2019 年底,太阳能发电量占日本总电源结构的比例已增加到 7%。(1)另一方面,运营商对发电厂的维护有不同的关注程度。特别是对于直流电压部分,持有执照的电气工程师负责制定维护菜单,规定应检查什么内容到何种程度。目前主流的直流电压部分的目视检查存在着重大问题,需要解决这些问题才能确保发电厂的长期稳定运行。鉴于上述背景,我们已将可以彻底监视直流电压部分的发电量的串监视系统 (SSMAP) 商业化。(2)此新系统配备了电力线通信 (PLC),可收集每个串中测量的功率数据。 PLC 收集的数据与日射强度计、温度计、光伏逆变器等设备的监测数据一起汇总到专业制造商的核心监控系统(主机系统)中并进行可视化。但是,一些负责实际发电厂维护的运行维护人员由于缺乏此类事件的专业知识,无法有效利用可视化的数值和图表来检测发电厂发生的异常事件。虽然一些主机系统具有异常数据检测/报告功能,但问题是它们使用阈值来检测异常。由于每个发电厂的运行环境不同,如果将单个阈值共同用于异常检测,则经常会发生误报和随后的警报。为了突破上述情况,我们参加了由国家电网公司发起和管理的 2017 年新能源维护规程精细化项目——电气设施维护技术精细化的评估和验证
目的随着3D建模技术和可视化设备的进步,基于增强现实(AR)的导航(AR导航)正在积极开发。作者开发了他们新开发的由内而外跟踪AR导航系统的试验模型。方法基于视觉惯性里程计(VIO)算法开发了由内而外的AR导航技术。创建快速响应(QR)标记并将其用于图像特征检测算法。由内而外的AR导航通过可视化设备识别、标记识别、AR实现和在运行环境中注册的步骤进行。创建了用于AR渲染的虚拟3D患者模型和用于验证注册精度的3D打印患者模型。由内而外跟踪用于注册。通过使用直观、可视化和定量的方法来通过匹配误差识别坐标来验证注册精度。开发了微调和不透明度调整功能。结果开发了基于ARKit的由内而外的AR导航。 AR模型的基准标记与3D打印患者模型的基准标记在所有位置均正确重叠,没有错误。AR导航的肿瘤和解剖结构与3D打印患者模型颅内放置的肿瘤和结构精确重叠。使用坐标量化配准精度,x轴和y轴的平均移动误差分别为0.52±0.35和0.05±0.16毫米。x轴和y轴的梯度分别为0.35°和1.02°。视频证明了微调和不透明度调整功能的应用。结论作者开发了一种基于内向外跟踪的新型AR导航系统,并验证了其配准精度。该技术系统可应用于针对特定患者的神经外科手术的新型导航系统。
尊敬的 Earl L. “Buddy” Carter 在轨道碎片管理方面,有许多国内和国际管辖权。这是否难以驾驭?如何简化这一过程?保护轨道运行环境以确保太空的可持续性是一个全球性问题,需要全球参与。这是美国领导层与业界合作制定标准实践的机会,围绕太空态势感知数据、运营商之间的通信和冲突消除活动以及如何减少轨道上碎片的产生。由于美国各政府机构独立处理轨道碎片和太空可持续性问题,因此有机会在政策制定方面密切合作,以避免冲突或重复的监管,然后在全球同行中发挥带头作用,鼓励采用美国标准做法。从 Planet 的角度来看,进一步的轨道碎片计划有四个优先领域。首先,我们需要更好地模拟低地球轨道大气环境。位置不确定性仍然是低地球轨道卫星运行的一个棘手问题。使用现有的低地球轨道环境模型测量两个有碰撞风险的物体之间的距离,即使提前 24 小时预测,误差幅度有时也会高达几公里。太空运营商需要更好的大气模型和空间态势数据,以减少这些位置不确定性,消除“误报”交会警报,并尽量减少潜在碰撞所需的机动距离。各国政府和国际组织应继续鼓励行业努力验证和标准化模型,并定义其使用的最佳做法,同时投资于低地球轨道环境天体动力学建模领域的研发。其次,我们需要在太空运营商之间更好地共享数据。各国政府和国际组织应采取额外措施,鼓励私人运营商与其他运营商共享最佳精度轨道星历表。Planet 通过 GPS 和双向超高频测距对自己的卫星进行轨道测定,并以各种格式公开提供这些数据。与其他运营商透明地共享轨道星历表和处理交会数据消息的运营人员的联系信息将减少不确定性
以下内容描述了成熟的专业工程师可能要履行的高级实践角色,这些角色摘自《澳大利亚工程师 - 特许地位手册》中描述的角色。这是对毕业时满足专业工程师第一阶段能力标准的工程师发展的期望。专业工程师需要对工程项目和计划承担最深远的责任。这包括所有使用的材料、组件、子系统和技术的可靠运行;它们集成以形成一个完整、可持续和自洽的系统;以及技术系统与其运行环境之间的所有交互。后者包括了解客户、广泛的利益相关者和整个社会的需求;努力在工程产品或计划的整个生命周期内优化社会、环境和经济成果;与其他学科、专业和人员进行有效互动;并确保工程贡献适当地融入到整个事业中。专业工程师负责向社会、企业和政府解释技术可能性;并尽可能确保政策决策充分考虑这些可能性和后果,并正确理解成本、风险和限制作为理想结果。专业工程师负责从多个来源获取知识,以开发复杂问题和问题的解决方案,确保技术和非技术考虑因素得到适当整合,并管理风险和可持续性问题。虽然工程成果具有物理形式,但专业工程师的工作主要是智力性质的。从技术意义上讲,专业工程师主要关注技术的进步以及通过创新、创造力和变革开发新技术及其应用。专业工程师可以开展与推进工程科学以及在广泛的工程学科内开发新原理和新技术有关的研究。或者,他们可能有助于不断改进工程实践,并制定和更新管理工程的规范和标准。专业人士的标志之一是能够以明智、负责任和可持续的方式开辟新天地。专业工程师负有特殊责任,确保项目的各个方面都以理论和基本原则为基础,并清楚地了解新发展与既定实践和经验以及他们可能与之互动的其他学科之间的关系。专业工程师可以领导或管理适合这些活动的团队,并可以建立自己的公司或担任工程和相关企业的高级管理职位。
瓦片是一种多层结构,两面都是光伏 (PV) 材料,PV 层下方有天线,还有一层承载 CMOS 集成电路,用于路由参考信号和定时,以控制天线的相位和直流到微波功率转换。瓦片具有将太阳能转换为微波能量并将该能量辐射到所需位置所需的所有功能。瓦片被制成长度从几米到 60 米不等的条带,然后将它们铺设到碳纤维结构中,该结构连接到展开装置上,而展开装置又连接到航天器上。碳纤维结构使条带可以折叠并卷入展开装置中,以便发射存放。我们目前的太空飞行器设计质量约为 430 公斤。发电站由许多太空飞行器组成,这些太空飞行器要么通过吊杆机械连接,要么自主编队飞行。SSPP 的中期目标之一是在太空中展示我们概念 [1] 的核心技术。通过验证技术在其设计运行环境中的性能以及展示系统内的功能接口正常运行,太空演示可以降低风险。我们设想进行一系列复杂程度不断增加的演示,以进一步增强对技术的设计和可扩展性的信心。我们的第一个这样的演示是空间太阳能演示一号(SSPD-1)。我们注意到最近有一个由 P. Jaffe [3] 领导的专门针对空间太阳能的太空演示。Jaffe 的“三明治”模块托管在美国空军 X-37B 太空飞机上,并在低地球轨道上运行了一年多。我们在 SSDP-1 开始时制定了几条基本规则。首先,有效载荷由三个独立的实验组成,以便可以单独测试每种技术。通过解耦如果我们要建造和飞行一个缩放的集成演示器时发生的依赖关系,我们可以验证核心技术的性能,而不会因相互依赖而产生潜在的混淆因素。其次,我们按照 NASA C/D 级任务标准 [4] 执行 SSPD-1 的开发、组装、集成和测试。我们的任务由技术目标(C 级)驱动,但我们的风险承受能力比其他级别(D 级)更高,复杂性相对较低(D 级),并且有程序约束(D 级)。作为 C/D 级任务运行,我们不必遵守任务更关键的有效载荷开发项目中的许多标准和 TOR,从而加快开发速度。我们仍然保持严格的测试
1. 美国国家背景和太阳物理部门的职责 在过去几年中,美国白宫科技政策办公室一直在制定美国国家轨道碎片战略,该战略已编入《国家轨道碎片实施计划》,于 2022 年 7 月发布。该计划涵盖三个领域:1. 碎片减缓 2. 碎片的跟踪和表征 3. 碎片的修复 虽然 NASA 已经确定了涵盖所有这三个领域的职责,但“碎片的跟踪和表征”下的几个项目现在属于 NASA 科学任务理事会太阳物理部门的职权范围。在广泛的组织层面,NASA 已将小型轨道碎片问题确定为机构风险,并分为三个单独的风险: - 空间可持续性:轨道碎片风险 - 空间可持续性:干扰 NASA 运营风险 - 空间可持续性:空间交通管理风险 为了解决和帮助减轻这些风险,NASA 的科学任务理事会 (SMD) 指示太阳物理部 (HPD): • 开发和部署空间仪器及其他调查,以更好地限制 500 至 1000 公里高度范围内的微碎片环境; • 开发和部署空间仪器及其他调查,以便更好地预测导致轨道碎片在地球大气层中损失的自然过程;以及 • 努力将这些测量结果整合到 NASA 开展的轨道碎片活动中,特别是 NASA 约翰逊基地的轨道碎片项目办公室,并改进空间天气预报。 HPD 已与 NASA 的轨道碎片计划办公室 (ODPO) 合作,帮助解决对小型 (<3 厘米) 轨道碎片群体了解不足的问题。ODPO 是 NASA 轨道碎片工程模型 (ORDEM 3.2) 的管理者,小型 OD 群体的特征最不明显,导致模型中的不确定性最大,是航天器设计中的一个重要成本驱动因素。我们对这些致命不可追踪 (LNT) 物体的缺乏了解,目前对 NASA 在低地球轨道 (LEO) 的运行任务构成了最大威胁,当然也扩展到所有在 LEO 上活动的航天器。如果不了解环境 (SSA),就无法完全了解 OD,如果不描述碎片群体及其影响,就无法完全了解运行环境 (SSA)。所有这些最好通过利用 HPD 的相关专业知识来完成。小型自然和人造空间物体(轨道碎片 [OD}、微陨石、尘埃)与传统空间天气一起被视为构成空间工作环境 (SWE),并且是 HPD 空间天气计划的一部分。
exectecte s ummary简介:本章主要解决与光学相关的组装问题,从晶圆厂的零件和晶片开始,直到组装设备已准备好进行最终测试。组装是将零件汇总在一起的过程,将它们相对于彼此准确对齐,然后使用各种过程将它们永久加入。光子设备已添加了独特的组装要求(纤维附件,子符精度,Z轴组件,消除粒子等)与典型的微电子和光学产品相比。这些问题是本章的重点。许多重要的应用都需要单模式技术,其中零件(尤其是纤维附件)需要在运行环境中产品的一生中光链的亚微米公差和稳定性。达到机械水平的水平需要从设计开始,选择材料和结构,以最大程度地减少温度和压力以及其他环境现象的影响,选择材料,连接方法以及将产生该结果的组装过程。通常,具有高模量(E)和低温系数E(TCE)的材料是最好的,并且已在光学设备中广泛使用。不幸的是,这些材料往往是昂贵的,因此精力用于利用较低的成本材料和较低的成本流程。需要大幅度降低光学设备的成本,以使光学产品在更多的应用中经济上可行。当前状态:避免组装成本的一种明显方法是最大程度地减少要组装的零件数量。由于包装和组装是当前设备成本的很大一部分,因此本章的重点是降低这些成本。通过在前端的平台级别上增加集成的使用来解决。不幸的是,光学应用中所需的所有功能尚未集成,因此使用适当的技术制成的零件合并在现在所谓的异质集成中。组装零件的复杂组合是异质组件。组装需求受到使光学设备较小的趋势的强烈影响,这意味着在MM与CM中测量的设备。此外,包含单模式组件需要在关节和位置公差中控制亚微米键线厚度。这些公差从电子组件中的MILS转到单模式设备中的微米和亚微米。此外,传感器不仅包含光子集成电路(图片),而且还包含其他专门零件,这些零件会对组装过程施加约束并限制和限制组装选项。许多光学设备都结合了脆弱的环境敏感零件,包括INP零件,基于聚合物的设备,SIN,GAAS和GAN基板以及施加进一步的装配限制的组件。最后,光学设备通常是三维而不是平面。这些唯一要求的要求的净结果是需要使用新材料和过程设备的新加入方法。主要挑战:主要挑战是降低光学设备的成本,以使光学产品在更多的应用中经济上可行。与发展成本的能力相比,与电子设备相比,制造的光子设备的相对较小的体积(数百万比数百万)相对较小。出售这些流程的潜在收入通常不足以收回其发展成本。当前的重要挑战是降低亚微米纤维和纤维阵列对齐的成本。另一个挑战是开发消除光纤辫子的方法。他们的包容性使制造业变得困难和昂贵。替代方案,例如内置在基板和电路板中的波导作为替代解决方案。这将需要关节以及基板和板上的零件和波导之间的相关组装过程。为具有所需特征的零件开发一个可靠的供应链对于光学产品是一个挑战。