事实上,连接子化学为新一代 ADC 的创新和开发提供了肥沃的土壤。参见 Tsuchikama, K. 等人,Nature Rev. Clin. Oncol.,21,203–223;2024。例如,连接子化学可用于调节毒性有效载荷的量(即药物抗体比),以及有效载荷的释放时间和地点,以提高 ADC 的疗效和耐受性。即使连接子化学本身可能并不新颖,但可能缺乏在 ADC 中使用特定连接子策略的动机,因为连接子会干扰抗体结构、改变抗体的翻译后修饰、导致聚集或提供过高或过低的有效载荷抗体比。因此,仔细考虑连接子及其对 ADC 功能的影响对于获得 ADC 的专利保护也至关重要。
在过去的几十年中,抗体-药物偶联物 (ADC) 的开发出现了显著的增长。设计理想的 ADC 是一项多方面的挑战,需要精确协调各种元素,例如抗原、抗体、连接子和有效载荷。虽然 ADC 旨在特异性地靶向肿瘤细胞,但在正常组织中也可以发现几种抗原,这可能会损害 ADC 在治疗应用中的特异性。复杂性延伸到抗体选择,需要有效靶向所需抗原并确保与连接子的兼容性以有效递送有效载荷。此外,连接子和有效载荷的组合对于 ADC 的治疗效率至关重要,平衡循环稳定性和靶标结合后及时释放有效载荷。ADC 剂量必须对正常组织安全,同时确保释放的有效载荷有效。ADC 的成功归因于其与传统化疗药物相比无与伦比的疗效。本研究论文旨在对用于癌症治疗的抗体-药物偶联物 (ADC) 进行技术综述。简要讨论了 ADC 的基础知识、监管方法、概述和量化的技术复杂性。本综述还总结了最近批准的 ADC,并介绍了抗体、连接子和有效载荷的概念。本文还概述了目前处于癌症治疗后期临床试验阶段的癌症特异性 ADC。
疾病。3 一种有吸引力的前药设计策略是将两个或多个不同的功能基序与可裂解的连接子结合起来。使用这种前药的理由是利用多组分前药的潜在协同作用或靶向作用,从而改善药代动力学并降低毒性。4 – 9 有几种不同的策略可以选择性地裂解连接子并释放母体药物。一些利用疾病病理生理学的独特方面,而另一些则基于疾病特定的递送技术。前药的一个典型例子是抗菌剂舒他西林®,它由不可逆的β-内酰胺抗生素氨苄西林、β-内酰胺酶抑制剂青霉烷酸和二酯键组成,并在体内同时水解为
• EZWi-Fit ® 采用 TopI 抑制剂作为负载,内在效力高于 Dxd。该负载不是 ABC 转运蛋白的底物,具有显著的旁观者效应。• 化学修饰的稳定可裂解连接子具有很强的亲水性。通过非 MC 化学结合,连接子-负载的解离大大减少。• 无论靶标和肿瘤类型如何,基于 EZWi-Fit ® 平台衍生的 ADC 均表现出优于 GGFG-Dxd ADC 的体内疗效。ADC 在多种对 MMAE 或 Dxd 有抗性的 CDX 和 PDX 模型中表现出肿瘤抑制或根除活性。即使在靶标表达较低时,ADC 也表现出令人印象深刻的活性。• 由于清除率低,EZWi-Fit ® 衍生的 ADC 具有很好的血清和肿瘤暴露。对多种 EZWi-Fit ® 衍生 ADC 的 NHP 安全性评估显示出很好的耐受性。
靶向药物输送作为一种提高药物疗效同时降低对健康组织毒性的方法,已引起越来越多的关注。特别是抗体-药物偶联物 (ADC),即通过化学接头与药理活性分子 (有效载荷) 连接的 mAb,是最有前途的一类药物,具有显著而持久的治疗效果;它们已被用于治疗癌症 (1、2) 和其他疾病 (3、4)。此类药物的临床成功已得到证实,FDA 批准的 12 种 ADC 可用于治疗广泛的血液系统恶性肿瘤和实体瘤 (5),并且有 100 多种候选药物正在进行临床试验 (clinicaltrials.gov)。尽管 ADC 化学、肿瘤内科和临床管理方面取得了最新进展,但基于 ADC 的治疗通常伴有各种副作用,包括骨髓抑制和肝毒性。因此,能够最大限度降低不良反应风险的 ADC 技术可用于实施有效的癌症治疗,而不会损害患者的生活质量。 ADC 连接子是影响整体药物疗效和安全性的关键组成部分 (6, 7)。近 70% 的 ADC 使用可裂解连接子,以有效释放内部的结合有效载荷
多种 pre|CISION ® exatecan 化合物表现出 FAP 诱导的细胞毒性。用 exatecan、pre|CISION ® exatecan、pre|CISION® exatecan + hFAP 或 pre|CISION ® exatecan + FAPi 处理 CFPAC-1 细胞 72 小时。培养基中血清中的 FAP 活性水平较低,因此具有不同 kcat/Km 的化合物表现出不同的活性;这用于监测化合物特性。调节封端基团 (A) 和自毁连接子 (B) 将改变 FAP 亲和力和化合物特性,如其各自的细胞毒性图所示。
2022 年 1 月 4 日在线提供抗体-药物偶联物 (ADC) 是一类相对较新的抗癌药物,其首次出现大约是在二十年前,但近年来,随着单克隆抗体抗癌免疫疗法的成功,人们对其重新产生了兴趣。事实上,ADC 将单克隆抗体的选择性与化疗剂 (有效载荷) 的细胞杀伤特性结合在一起,并通过适当的连接子结合在一起。抗体部分靶向由肿瘤细胞和/或肿瘤微环境细胞表达的特定细胞表面抗原,并充当在肿瘤块内递送细胞毒性有效载荷的载体。尽管在选择性和效力方面具有优势,但 ADC 的开发并非没有挑战,因为:i) 当靶抗原并非完全由癌细胞表达时,肿瘤选择性低;ii) 由于连接子不稳定,细胞毒药物过早释放到血液中; iii) 肿瘤对有效载荷产生耐药机制。与未结合的细胞毒性药物相比,所有这些因素都可能导致疗效不佳和/或安全性没有改善。尽管如此,抗体的开发被设计为在肿瘤中被激活之前保持惰性(例如,抗体在内化后或在肿瘤微环境的酸性条件下被蛋白水解激活),以及创新靶点和细胞毒性或免疫调节有效载荷的发现,使得设计出有望具有改进治疗特性的下一代 ADC 成为可能。本综述概述了已批准的 ADC、相关优势和局限性,以及目前正在进行临床研究的 ADC 利用的新靶点。© 2022 Elsevier Inc. 保留所有权利。
摘要:创造方法来控制药物在特定组织的活化同时又不伤害健康组织的能力仍然是一项重大挑战。外源性靶向特异性触发剂的施用有可能从抗体-药物偶联物 (ADC) 和笼状前药中无痕释放活性药物到肿瘤部位。我们开发了一种金属介导的键裂反应,该反应使用铂配合物 [K 2 PtCl 4 或顺铂 (CisPt)] 来活化药物。反应成功的关键是水促进的活化过程,该过程触发铂配合物的反应性。在这些条件下,戊炔酰基叔酰胺和 N-炔丙基在水体系中迅速脱笼。在细胞中,细胞毒药物 5-氟尿嘧啶 (5-FU) 和单甲基金铂 E (MMAE) 的受保护类似物被无毒量的铂盐部分激活。此外,在铂盐存在下,还对非内化 ADC 进行了脱嵌,该 ADC 采用戊炔酰基无痕连接子构建,该连接子具有三级酰胺保护的 MMAE,可在癌细胞中释放出细胞外药物。最后,在结直肠斑马鱼异种移植模型中,CisPt 介导的 5-FU 炔丙基衍生物的前药活化作用可显著缩小肿瘤大小。总体而言,我们的结果揭示了一种新的基于金属的可裂解反应,将铂配合物的应用范围扩展到催化和癌症治疗之外。
从 ADC 中去除药物连接子相关杂质可能很麻烦,尤其是在测试大量不同成分和反应条件时。基于树脂的方法(如色谱法或脱盐法)需要多次清洗以达到缓冲液平衡,并且会稀释样品,从而增加本来就很长的方案的时间。离心过滤器会导致死端过滤,并使膜上的样品浓缩不均匀,从而导致聚集。TFF 适用于大型实验,但是一种低通量方法,难以用于小规模的试点和台式研究。Unagi(图 1A)填补了其他方法的不足,一次可处理 8 个样品,无需动手,自动化操作可防止稀释和死端过滤,从而严格控制清理、缓冲液交换和浓缩步骤