构建一种理论,即统一量子力学(QM)和一般相对论(GR)一直是一项近一个世纪的努力,一直持续到今天。即使在理论量子重力方面取得了长足的进步,我们仍然没有完整的解决方案。也许是由于这项努力的巨大困难,因此早期实现了体验物理学在量子重力领域中起着的关键作用,这是早期实现的,这是对重力波(GWS)在2015年提高引力波(GWS)的首次观察的作用[1-4]。在2016年GW发现论文之前,量子重力实验探针的建议包括γ射线爆发[5],米歇尔森实验室量表的干涉仪[6],超高的能量宇宙射线和界面[7] [7] 9],重力耦合G [10,11],量子与重力散射[12,13],分子干涉测定法[14],洛伦兹违反了签名和约束[15],以及许多其他[16] [16] [16],两种模型依赖于模型的空间(例如,弦量量子量)(例如,弦量量子量)(例如,独立的量子)。从2016年开始,在越来越多的新(或更新)的实验溶液(包括干涉仪)中,可以检测到GW的较弱领域中可能弱的信号。实际上,尽管GR正确地解释了所有当前的GW观察结果[17-19]和重力测试[20],但仍然有可能
了解挑战 鉴于采用数字技术的高效性(例如,生产率提高了 40%),企业数字化的缓慢性却令人惊讶。目前,企业通常仅利用其生成的 30% 的数据。这种犹豫限制了他们以有意义的方式应用数据分析的能力,并限制了他们利用潜在商业价值的能力 [2,3]。显然,在承认使用数字技术的有效性与能够或愿意利用与数字化相关的难以想象的价值之间存在差距 [4]。通过分析现有趋势,ABB 调查了这一难题,发现根本原因不是缺乏数字化的愿望,而是不知道从哪里开始。
b'We考虑了确定有向图中的根和全局边缘和顶点连接性(以及计算相应切割)的基本问题。对于具有小整数功能的根(以及全局)边缘连接,我们给出了一种新的随机蒙特卡洛算法,该算法在时间\ xcb \ x9c o n 2中运行。对于根边连接性,这是第一个在密度高图高连续性方向上绑定的\ xe2 \ x84 \ xa6(n 3)时间上改进的算法。我们的结果依赖于采样的简单组合以及显得新颖的稀疏性,并且可能导致有向图连接问题的进一步权衡。我们将边缘连接想法扩展到有向图中的根和全局顶点连接。我们获得了\ xcb \ x9c o(nw/\ xcf \ xb5)中的根顶点连接的(1 + \ xcf \ xb5) - approximation,其中w是w是总顶点的重量的时间(假设Integral verterx werges flovex wevertex weivers apteral vertex weivers witteral wittex weivers w we特别地,这会产生一个\ xcb \ x9c o n 2 /\ xcf \ xb5时间随机算法的未加权图。这转化为\ xcb \ x9c o(\ xce \ xbanw)时间精确算法,其中\ xce \ xba是根的连接。我们以此为基础为全局顶点连接获得类似的范围。我们的结果补充了由于Gabow的工作[8]的1991年边缘连接性工作以及Nanongkai等人的最新工作,因此在低连通性方面的这些问题的已知结果。[23]和Forster等。[6]用于顶点连接。
大脑图像分析中的一项常见任务包括诊断某种疾病,其中分析并比较了健康对照组和患病受试者。另一方面,对于一组具有不同技能的健康参与者,对大脑功能的独特分析仍然是一个具有挑战性的问题。在这项研究中,我们开发了新的计算工具,以探索健康个体大脑之间可能存在的功能和解剖学差异,以不同水平的任务经验/培训率识别。为此,我们查看了业余和专业国际象棋播放器的数据集,在那里我们利用静止状态功能磁共振图像来生成功能连接(FC)信息。此外,我们还利用T1加权磁共振成像来估计形态计量连通性(MC)信息。我们将功能和解剖学特征结合到新的连接矩阵中,我们将其称为功能形态相似性连接组(FMSC)。由于FC和MC信息都易于冗余,因此使用统计特征选择减少了此信息的大小。我们使用现成的机器学习分类器,支持向量机,用于单模式分类。从我们的实验中,我们确定大脑的显着性和腹侧注意网络在两组健康受试者(国际象棋参与者)之间在功能和解剖学上不同。我们认为,由于国际象棋涉及高阶认知的许多方面,例如系统思维和空间推理,并且识别网络是对需要响应的认知任务的任务阳性,因此我们的结果是有效的,并且支持拟议的计算管道的可行性。此外,我们对现有的神经科学假设进行了定量验证,即学习某种技能可能会导致大脑的变化(功能连通性和解剖结构),并且可以通过我们的新型FMSC算法进行测试。
图1 RNA干扰:将miRNA基因转录为原代miRNA(pri-miRNA),该基因由Drosha进一步处理以形成前miRNA。Exportin-5将前MIRNA转移到细胞质中,如果将其处理为成熟的miRNA。siRNA可以通过化学合成直接获得,并在载体或化学修饰的帮助下可以通过内吞作用到达细胞质。在细胞质中,成熟miRNA或siRNA的引导(反义)将组装到RNA诱导的沉默复合物(RISC)中。乘客(感官)链将被丢弃。成熟的RISC将通过与引导链配对找到目标mRNA序列。少于7个互补碱(种子区域)足以用于miRNA介导的RNAi,而siRNA诱导的沉默通常需要完全互补性。取决于触发分子(siRNA或miRNA),由于mRNA降解或转移到P体中,靶基因的翻译可能会被抑制。mRNA疗法:一旦通过适当的递送方法引入在细胞质中,经过改良的外源mRNA可以劫持细胞的核糖体,以转化为功能性蛋白质
简介 这篇关于神经成像科学中的功能性和有效连接的综述试图反映这一领域日益增长的兴趣和发展速度。在与《脑连接》的编辑们讨论这篇文章的性质时,我得到的印象是,Biswal 博士期待对脑成像中连接的基本问题进行学术综述。另一方面,Pawela 博士想要一些更具争议性和吸引力的东西,即引发读者讨论。我向 Chris 保证,如果我坦率地写出连接研究的背景和当前问题,那么将有足够的争议让他高兴。因此,我认真致力于撰写一篇关于神经成像中连接分析的发展和实践的辩论性和自我参照性评论。这篇评论包括三个部分。第一部分简要介绍了大脑的功能整合史,特别关注功能性和有效连接之间的区别。第二部分讨论更实际的问题。它探讨了功能连接和有效连接之间的差异,并试图根据各种分析方法的特征阐明它们之间的关系。在第三部分中,我们将介绍实验和内生网络活动建模方面的最新进展。为了从主题上说明这些方法的威力,本节重点介绍处理层次结构以及前向和后向连接之间的必要区别。本节最后回顾了网络发现方面的最新进展以及
