方法 我们对 119 名被诊断患有罕见遗传病、在雷迪儿童医院接受全基因组测序 (WGS) 的先证者(其中大部分是 NICU 婴儿)的回顾性队列中的 GEM 进行了基准测试。我们还对在另外五家学术医疗中心确诊的 60 例病例的另一队列进行了复制研究。为了进行比较,我们还使用常用的变异优先级工具(Phevor、Exomiser 和 VAAST)分析了这些病例。比较包括三重奏、二重奏和单例的 WGS 和全外显子组测序 (WES)。诊断所依据的变异涵盖了多种遗传方式和类型,包括结构变异 (SV)。患者表型是手动或通过自动临床自然语言处理 (CNLP) 从临床记录中提取的。最后,重新分析了 14 个以前未解决的案件。
© 作者。2021 开放存取 本文根据知识共享署名 4.0 国际许可进行许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecommons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
人工智能减少了ICU中婴儿罕见遗传病诊断的时间和精力,可以在5分钟内分析与13,000种遗传病相关的450万种变异。
造血是人类生命周期中不断发展的高度动态过程。胎儿期和围产期是特殊的生理变化和进化时期。在这些发育阶段,体质性遗传条件可能导致维持和分化干细胞和祖细胞的有效调节剂失衡,从而导致新生儿和幼儿出现特定的血液学表型。一个突出的例子是唐氏综合征,其 21 三体性介导的胎儿造血紊乱。大约 10% 的唐氏综合征新生儿出现暂时性异常骨髓造血,其特征是外周血原始细胞增多和转录因子 GATA1 的特异性体细胞突变。1 虽然 10% 至 20% 的病例在出生后 4 年内转变为全面性白血病,但大多数病例无需治疗即可痊愈。另一种常见的发育障碍是努南综合征,该综合征由 RAS/丝裂原活化蛋白激酶 (MAPK) 通路的种系致病变异引起,可在出生后头几个月表现为暂时性骨髓增生性疾病 (MPD)。大多数努南综合征患者携带 PTPN11 种系突变。2 尽管唐氏综合征中暂时性异常髓系生成的突变情况至少已得到部分阐明,但努南综合征相关 MPD 的机制仍然很大程度上不清楚。Perez-Garcia 等人 3 和 Blombery 等人 4 报道了另一种暂时性 MPD,发生在 SH2B3 基因双等位基因种系突变的患者出生后不久。 SH2B3 编码淋巴细胞衔接子 LNK(也称为 SH2B3),是 SH2B 衔接子蛋白家族的成员,该家族还包括 APS(SH2B2)和 SH2B(SH2B1)(图 1)。SH2B 蛋白具有共同的结构,即 N 端二聚化结构域、中央 pleckstrin 同源性 (PH) 结构域和 C 端 Src 同源性
搜索字段 Crispr + cas9 “Francis Mojica”+crispr 疾病 + 遗传 “遗传病”+人类 “囊性纤维化” “镰状细胞”+疾病 “亨廷顿病” “BRCA 基因” “基因治疗” “罕见疾病” “遗传病”+“环境因素” “特纳综合征” “转染” “腺相关病毒”+“基因治疗” “水平基因转移” “垂直基因转移” “Crispr 成本” “crispr 胚胎” 表 1. 用于获取本论文中呈现的信息的数据库中使用的关键词列表。
全球有数百万人患有由 DNA 序列各种突变引起的罕见遗传病。罕见遗传病的传统治疗方法往往无效,因此人们对基因编辑方法寄予厚望。基于 nCas9(具有切口酶活性的 Cas9)或 dCas9(催化无活性的 DNA 靶向 Cas9 酶)的 DNA 碱基编辑系统能够在不造成双链断裂的情况下进行编辑。这些工具在不断改进,增加了它们在治疗中的潜在用途。在这篇综述中,我们描述了主要类型的碱基编辑系统及其在体外和体内实验中治疗单基因疾病的应用。此外,为了了解这些系统的治疗潜力,我们还研究了碱基编辑系统的优缺点。
尽管研究取得了重大进展,为了解罕见病的分子基础提供了必要的工具,而且立法提供了监管和经济激励措施以加快特定疗法的开发,但大多数罕见病(孤儿病)仍然缺乏获批的治疗选择。解决这一转化差距是一项多方面的挑战,其中一个关键方面是选择最佳治疗方式,将罕见病知识的进展转化为潜在的药物(即孤儿药)。开发罕见遗传病孤儿药的策略有多种,包括蛋白质替代疗法、小分子疗法(例如底物减少、化学伴侣、辅因子、表达修饰和通读疗法)、单克隆抗体、反义寡核苷酸、小干扰 RNA 或外显子跳跃疗法、基因替换和直接基因组编辑疗法、mRNA 疗法、细胞疗法和药物再利用。每种策略在孤儿药开发中都有自己的优势和局限性。此外,由于患者招募困难、分子生理学未知、疾病自然史、儿科患者的伦理问题以及监管挑战,罕见遗传病临床试验面临诸多障碍。为了解决这些障碍,罕见遗传病界(包括学术机构、行业、患者权益组织、基金会、付款人以及政府监管和研究组织)必须参与讨论这些问题。
15 资料来源:Francisco M De La Vega、Shimul Chowdhury、Barry Moore、Erwin Frise、Jeanette McCarthy、Edgar Javier Hernandez、Terence Wong、Kiely James、Lucia Guidugli、Pankaj B Agrawal、Casie A Genetti、Catherine A Brownstein、 Alan H Beggs、Britt-Sabina Löscher、Andre Franke、Braden Boone、Shawn E Levy、Katrin Õunap、Sander Pajusalu、Matt Huentelman、Keri Ramsey、Marcus Naymik、Vinodh Narayanan、Narayanan Veeraraghavan、Paul Billings、Martin G Reese、Mark Yandell和Stephen F Kingsmore,“人工智能可对罕见遗传病进行全面基因组解释并提出候选诊断方案”(Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases),PMCID: PMC8515723,PubMed Central生物医学和生命科学数据库,美国国立卫生研究院(NIH),美国国家医学图书馆(NLM),2021年10月14日