技术的重点:福利意图如何调节TP的影响?在透明度和支持之间达到适当的平衡对于智能产品的接受至关重要(Rochi,2023; Venkatesh,2022)。透明度不足会导致人身控制的丧失(Botti&Iyengar,2006年),而过度支持可能导致信息超负荷(Schein&Rauschnabel,2023)。此外,用户与智能产品之间的相互交流(互动性)对感知的侵入性产生负面影响(Lucia -Palacios&Pérez -López,2021年)。对于智能产品也是如此,在这种产品中,未经请求的建议可以导致消费者忽略技术建议并触发回旋镖效果(Feng&Magen,2016)。因此,Rochi(2023)提出,提供更多的支持最初提高了感知的有用性,但是在某种程度上,它达到了峰并开始下降,从而产生了倒立的U形效应。TP的福利维度与其他两个维度之间的相互关系需要进一步研究。
摘要 - 深度强化学习(DRL)通常需要大量的数据和环境相互作用,从而使培训过程耗时。在批处理RL的情况下,这一挑战进一步加剧了,在批处理RL的情况下,该代理仅在没有环境相互作用的预收集数据集上训练。量子计算的最新进展表明,与经典方法相比,量子模型可能需要更少的培训数据数据。在本文中,我们通过提出一种利用变量量子电路(VQC)作为离散批处理量Q-LEATER(BCQ)算法中的函数近似器来研究这种潜在优势。此外,我们通过周期性移动数据编码层中的输入变量顺序引入了新的数据重新上传方案。我们评估了算法在Openai Cartpole环境中的效率,并将其性能与基于经典的神经网络的离散BCQ进行比较。索引术语 - Quantum增强学习,批处理封装学习,变分量子计算,数据上传,数据重新上传,批量量子加固学习,离线量子加固学习。
另一方面,这个术语显然是在“量子技术”的受欢迎程度和快速发展的影响下出现的,通常称为“第二量子革命” [3],涵盖了量子计算和交流。因此,在量子材料的定义中,出现的概念通常会因其量子应用的承诺而加强。经典的超导性是最著名的新兴现象,它是由语音(声波的量子)(声波的量子)成对的,它来自具有玻色子的对。So, while classical superconductors are the first example of quantum materials that come to mind, the novel superconductors: high-Tc cuprates (Cu-SC) [4] or iron-based pnictides and chalcogenides (Fe-SC) [5], exhibit the next level of emergent complexity, where ‘mul- tibanding', the multiple-band electronic structure, is important for both pairing mechanisms [6] and quantum applications [7]。超导量子计算机实施的潜力很明显,包括Google [8]和IBM [9]在内的主要计算机公司,使用经典的超级传导器(尤其是铝)开发其量子计算机。然而,他们面临的破坏性问题[10,11],这些问题不太可能通过经典的超副核对器解决。在这种情况下,新型的多型超导体显示出巨大的希望。在这里,我们对新型量子材料(例如多型超导体和拓扑半理数)的多型效应进行了综述,以便深入了解其新兴特性背后的基本物理机制以及未来量子应用的发展。
摘要秘密共享是一种加密计划,可以编码分发给参与者的多个股票的秘密,因此只有合格的参与者才能从其股票中恢复原始秘密。当我们通过秘密共享计划编码秘密并分发股票时,有时并非所有参与者都可以访问,并且希望在确定秘密信息之前向这些参与者分配股票。众所周知,秘密共享经典秘密方案可以在给定秘密之前分发一些股票。Lie等。找到量子秘密的阈值秘密共享可以在给定秘密之前分发一些股票。但是,尚不清楚在给定秘密之前分配一些股票,而其他秘密共享的访问结构是量子秘密的。我们为量子秘密提出了一种量子秘密共享计划,可以在给定秘密之前用其他访问结构分配一些股票。关键词:量子秘密共享,提前共享,稳定器代码,EAQECC
摘要 - 随着云计算的越来越多,确保云环境中的数据安全已成为商业组织的关键问题。量子密码学利用量子力学的原理来保证安全的通信,因为任何窃听的尝试都会改变量子状态,从而提醒当事方入侵。本文提出了用于云安全性的基于Ciphertext-Policy属性的多量量子密钥分布(QKD)Ciphertext-Policy属性(CP-ABE)。使用量子密码学用于安全云数据的建议的多量QKD模型涉及使用量子密钥分布协议来生成一个安全的加密和解密密钥。此协议涉及通过量子通道发送量子信号,以在发件人和接收方之间分配秘密密钥。然后使用CP-ABE技术将密钥用于对数据进行加密和解密。此技术允许基于属性而不是明确的密钥交换来对数据进行加密和解密,这使其特别适用于由多个访问级别级别的用户存储和处理数据的云环境。提出的仿真模型的积极结果表明,量子密码学在保护云数据中的潜力。索引术语 - 量子密码学,多Qubit量子密钥分布,云安全性,消费者安全性。
随着理论和应用技术的进步,基于经典加密的通信系统受到量子计算和分布式计算的严重威胁。为了抵御安全威胁,一种将机密信息直接加载到量子态上的通信方法——量子安全直接通信(QSDC)应运而生。本文报告了第一个连续变量QSDC(CV-QSDC)实验演示,以验证基于高斯映射的CV-QSDC协议的可行性和有效性,并提出了一种实际信道下信号分类的参数估计。在我们的实验中,我们提供了4×10 2 个块,每个块包含10 5 个数据用于直接信息传输。对于我们实验中5 km的传输距离,过剩噪声为0.0035 SNU,其中SNU表示散粒噪声单位。4.08×10 5 bit/s的实验结果有力地证明了光纤信道下CV-QSDC的可行性。提出的基于参数估计的等级判断方法为实际光纤通道中的CV-QSDC提供了一种实用、可用的消息处理方案,为等级协调奠定了基础。
其中 η ( q ) = Q ∞ k =1 (1 − qk ) 是 Dedekind eta 函数,它计数所有能级 m 上的分区 p ( m )。在许多相关的物理应用中,可能会发生 N 级上的特定后代 ξ 同时是原发性的。这被称为零向量,它提供自己的 Verma 模块 V ξ ,该模块与由 | hi ⟩ 生成的所有其他状态正交。因此,它与 Vi 解耦并可以被商掉。在适当地从 Vi 中商掉所有零向量后,可得到不可约的 Virasoro 模块 H i 。显然,此过程减小了向量空间的大小,因此 ( 1 ) 中的 d(m) ≤ p(m)。这反映在不可约模块 H i 的特征中。例如,考虑 N 级上单个零向量 ξ 的情况,它已被商掉。注意,零场 ξ 具有共形权重 h ξ = hi + N 。原始 Verma 模块 V i 摆脱了 Verma 模块 V ξ ,
量子密钥分发 (QKD) [1–3] 解决了两个用户之间共享密钥的问题。此类密钥可用于安全通信。尽管原始 QKD 协议 [2–5] 依赖于在离散量子态(如单光子的偏振)中对经典信息比特进行编码,但人们也可以利用连续变量 QKD (CV QKD) 协议,其中比特在光的正交相位上进行编码 [6–9]。尤其是,CV QKD 系统的最新进展使其与传统的离散变量系统 [10, 11] 处于竞争地位。例如,与需要单光子探测器的离散变量 QKD 协议相反,CV QKD 使用相干测量方案(如同差和/或异差检测)来测量光正交相位,与高速率相干电信系统兼容 [12–14]。此外,与大都市区域相比,CV QKD 协议在短距离内是更好的选择 [11]。然而,一旦涉及长距离,CV QKD 就有其自身的挑战来与离散变量 QKD 竞争 [15]。本文研究了如何通过使用现实的非确定性放大来增强 CV QKD 系统中的安全距离 [16]。提出的提高 CV QKD 协议速率与距离性能的解决方案之一是使用无噪声线性放大器 (NLA) [16,17]。众所周知,确定性放大不可能无噪声 [18]。NLA 只能以概率方式工作。这不可避免地会将密钥速率降低一个与 NLA 成功率相对应的倍数,这意味着,在短距离内,使用 NLA 可能没有好处。然而,由于信噪比的提高,密钥率可能会在长距离上增加。也就是说,虽然我们可用于密钥提取的数据点数量较少,但其余点的质量也可能很高,这样就可以提取出更多的密钥位。这已在理论上得到证明,方法是将 NLA 视为一个概率性的、但无噪声的黑匣子,其中成功概率的上限为 1 /g 2,其中 g 是放大增益 [16]。当我们将上述理想的 NLA 替换为提供类似 NLA 功能的现实系统时,情况可能会大不相同。
摘要 随着对大带宽的需求呈指数级增长,考虑最佳网络平台以及通信网络中信息的安全性和隐私性非常重要。高载波频率的毫米波和太赫兹被提议作为通过提供超宽带信号来克服现有通信系统香农信道容量限制的使能技术。毫米波和太赫兹还能够建立与光通信系统兼容的无线链路。然而,大多数能够在这些频率范围(100 GHz-10 THz)下合理高效运行的固态元件,尤其是源和探测器,都需要低温冷却,这是大多数量子系统的要求。本文展示了当源和探测器在低至 T = 4 K 的低温下运行时,可以实现安全的毫米波和 THz 量子密钥分发 (QKD)。我们比较了单输入单输出和多输入多输出 (MIMO) 连续变量 THz 量子密钥分发 (CVQKD) 方案,并找到了 f = 100 GHz 和 1 THz 之间的频率范围内的正密钥速率。此外,我们发现最大传输距离可以延长,密钥速率可以在较低温度下提高,并且通过使用 1024 × 1024 根天线,在 f = 100 GHz 和 T = 4 K 时实现超过 5 公里的最大秘密通信距离。我们的结果首次展示了毫米波和太赫兹 MIMO CVQKD 在系统运行温度低于 T = 50 K 下的可能性,这可能有助于开发下一代安全无线通信系统和量子互联网,用于从卫星间和深空到室内和短距离通信的应用。
分别应用于空间输入的极化状态 ρ pol ( |𝐻⟩ , |𝑉⟩ , |𝐷⟩ , |𝐴⟩ , |𝑅⟩ , |𝐿⟩ )