摘要:众所周知,在现代微电子和纳米电子学中,薄膜结构被广泛用作栅极电介质、钝化层、膜等。本文研究了单晶硅晶片上互连脉冲加热过程中氧化硅薄子层中形成裂纹的问题。本文旨在研究表面热冲击源对薄膜裂纹形成的影响,并详细研究了 SO2 薄膜中裂纹形成的各个方面。在硅衬底-氧化硅子层-铝膜 (Si-SiO 2 -Al) 多层结构上对所做的估计进行了实验验证。作为衬底,使用了磷掺杂的硅单晶晶片,取向为 (111) 方向,电阻率在 = 0.1 Ω . сm 范围内。作者研究了表面金属化层加热的硅晶片(Al-Si 系统)和氧化硅晶片(Al-SiO2 系统)的温度场,既有点热源的情况,也有长矩形金属化路径的情况(假设轨道长度明显超过其宽度)。计算结果表明,金属化路径(宽度 75 μm)横向的温度分布是不均匀的。结果还表明,与 SiO2 膜相比,硅中出现的机械应力水平不足以在热冲击源附近形成裂纹。这是因为硅的抗拉强度高于氧化物。
冷气动力喷雾(CGD)是用于此过程的一般术语,尽管它也可以称为动力学金属化或动态金属化(Katanoda等,2007)。在1980年代初期首次在俄罗斯研究了使用CGDS方法涂层形成的现象。俄罗斯科学院西伯利亚分支机构的S.A. Khristianovich S.A. Khristianovich理论和应用机械学院(ITAM)的科学家团队开发了一种技术,可以通过将颗粒加速到超音速速度来应用金属涂料。这项研究导致了两项苏联专利的创建,该专利涵盖了使用高压气体在高于颗粒的熔点的高压加速金属颗粒的方法和设备,从而形成了非孔涂层,并形成了强烈的粘附于底物(Alkhimov等,1990年)。
密集,非孔和真空紧密高机械强度和硬度低热量膨胀高容量电阻率耐磨性•一致的介电常数敏感性•容易接受莫利 - 曼格纳斯金属化,用于高温
随着直接金属化和 HDI 的出现,通孔的长期可靠性和性能问题浮出水面。此外,用树脂涂层铜 2 型箔和标准 FR-4 与金属化技术(直接与传统化学镀铜)制造的通孔之间的关系可能会影响互连的可靠性。许多因素可能会影响整体通孔可靠性:(1)孔内电沉积铜的均匀性,(2)铜的总镀层厚度,(3)微孔定位焊盘上镀铜的厚度,(4)镀铜与互连的粘附性以及(5)可能干扰镀铜均匀沉积的任何其他因素。随后,人们对用树脂涂层铜 2 和 FR-4 制造的通孔的可靠性提出了质疑。人们对于石墨系统催化表面镀铜质量与标准化学镀铜的比较也产生了其他担忧。
理解磁铁矿 (Fe3O4) — 一种强关联磁性氧化物 — 中的 Verwey 跃迁是一个百年老话题,由于最近的光谱研究揭示了它的轨道细节,它重新引起了人们的极大关注。这里报道了通过使用离子门控调整轨道配置来调制 Verwey 跃迁。在外延磁铁矿薄膜中,绝缘的 Verwey 态可以连续调整为金属态,表明低温三聚体态可以通过栅极诱导的氧空位和质子掺杂可控地金属化。离子门控还可以反转异常霍尔系数的符号,这表明金属化与具有竞争自旋的新型载流子的存在有关。与符号反转相关的可变自旋取向源于栅极诱导的氧空位驱动的结构扭曲。
以及用于在500°C下运行的硅碳化硅(SIC)传感器和电子设备的开发,长期高温测试以及这些传感器和电子设备的部署需要兼容的包装技术。96%Al 2 O 3陶瓷是一种良好的电绝缘材料,在宽温度和频率范围内可接受的介电常数和低介电损耗。本文为低功率集成电路提供了包装系统,包括基于96%AL 2 O 3陶瓷基板的8-i/o芯片级包装和印刷电路板(PCB)(PCB),以及用于500°C应用的AU厚金属化金属化。介绍了与包装和PCB的设计,包装材料以及特定包装步骤食谱有关的详细信息,包括电线 - 粘合和模具结合。审查了该原型包装方法的一些测试结果,该方法在500 O C时应用于SIC集成电路。关键词高温,包装,氧化铝,厚膜
为了表征该技术,我们进行了几种层压实验:• 第一次层压实验是使用两条非金属化 LTCC 胶带实现的,层压板是在室温下将两片绿带连接起来并在它们之间形成一层薄有机流体层而制成的。• 第二次层压实验是使用金属化 LTCC 胶带通过丝网印刷技术沉积 Ag/Pd 导体金属糊剂实现的。层压板是在室温下将两片绿带连接起来并在它们之间形成一层薄有机流体层而制成的。• 第三次层压实验是使用三片绿带实现的。第一和第三条绿带未经机械加工。第二条绿带具有 L 形通道,这些胶带的连接是通过有机流体层压实现的。使用软橡胶辊施加低层压压力;通常达到 2.5 或 5 MPa 的值。
要跟上对较小天线的需求,其性能提高和成本下降,大多数下一代体系结构都要求更高的IC(集成电路)芯片集成。与传统的包装配置相比,高级芯片包装技术(例如2.5D和3D)提供了更大的芯片兼容性和较低的功耗。鉴于这些优点,不可避免地采用先进包装。在高级包装中,铜支柱互连是一个关键的启用技术,也是下一个逻辑步骤。这项技术提供了多种好处,包括改善电气抗性,改善的电导率和导热性,简化的弱化金属化金属化(UBM)以及更高的I/O(输入/输出)密度。铜支柱允许的细球有助于该技术取代焊撞技术,该技术达到了最低的40微米。更精细的音高允许更高的I/O计数,从而提高性能。
1弗劳恩霍夫太阳能系统ISE ISE,Heidenhofstraße2,79110 Freiburg,德国2 ASYS Automation Systems GmbH,Benzstr。10,89160德国Dornstadt 3 Gallus Ferd。 rüeschag,Harzbüchelstrasse34,9016 St. Gallen,瑞士4 Lehner Engineering GmbH,Ebnettstrasse 18,9032,瑞士5 1,0676德国Bitterfeld-Wolfen 7 Kurt Zecher GmbH,Görlitzerstr 2,33098德国Paderborn 8技术大学达姆斯塔特,Magdalenenstraße2,64289 Darmstadt,德国,德国9现在,现在有:Thieme Gmbh&Co。KG,Robert-Bosch-Bosch-Straße1,79331 teneningen,Dergem摘要:在研究项目“摇滚明星”中开发的创新的高通量旋转式示范机上制造的钝化发射器和后触点(PERC)太阳能电池。 该机器旨在使用新开发的航天飞机运输系统执行最多600 mm/s的硅太阳能电池的金属化 在第一个实验中,多晶硅(MC-SI)PERC太阳能电池在后侧金属,旋转筛网印刷获得的平均转换效率为η= 19.3%,该效率与带有筛网印刷后侧的参考单元的水平相同金属化(η= 19.3%)。 此外,提出了一个9个细胞示范器模块,其中显示了在演示器和Smartwire(SWCT)互连上部分金属金属的细胞。10,89160德国Dornstadt 3 Gallus Ferd。rüeschag,Harzbüchelstrasse34,9016 St. Gallen,瑞士4 Lehner Engineering GmbH,Ebnettstrasse 18,9032,瑞士5 1,0676德国Bitterfeld-Wolfen 7 Kurt Zecher GmbH,Görlitzerstr2,33098德国Paderborn 8技术大学达姆斯塔特,Magdalenenstraße2,64289 Darmstadt,德国,德国9现在,现在有:Thieme Gmbh&Co。KG,Robert-Bosch-Bosch-Straße1,79331 teneningen,Dergem摘要:在研究项目“摇滚明星”中开发的创新的高通量旋转式示范机上制造的钝化发射器和后触点(PERC)太阳能电池。该机器旨在使用新开发的航天飞机运输系统执行最多600 mm/s的硅太阳能电池的金属化在第一个实验中,多晶硅(MC-SI)PERC太阳能电池在后侧金属,旋转筛网印刷获得的平均转换效率为η= 19.3%,该效率与带有筛网印刷后侧的参考单元的水平相同金属化(η= 19.3%)。此外,提出了一个9个细胞示范器模块,其中显示了在演示器和Smartwire(SWCT)互连上部分金属金属的细胞。关键字:硅太阳能电池,制造和加工,PERC,金属化,旋转印刷1简介平面丝网印刷(FSP)是晶体硅(SI)太阳能电池的最新技术。尽管在过去几年内生产率取得了显着进步,但FSP工艺几乎接近技术限制,而吞吐量的进一步增加。应对这一挑战的一种非常有前途的方法是应用高生产性旋转印刷方法,即旋转丝网印刷(RSP)和Flexographic Printing(FXP)。在资助的研究项目中»摇滚明星«(合同号13N13512),一个项目合作伙伴和研究机构的项目构成,已经为开发旋转印刷演示机的雄心勃勃的目标设定了一个雄心勃勃的目标,该机器能够实现高达600 mm/s的太阳能电池的金属化,这与每小时8000 Wafers of 8000 wafers on Single of 600 mm/s的印刷速度相当于。在项目中,已经在开发材料,打印过程和机器平台方面做出了巨大的努力。在这项工作中,我们介绍了»摇滚之星«演示器的概念以及第一个PERC太阳能电池的I-V-结果,这些perc太阳能电池已使用演示器机器上的旋转丝网印刷单元进行了部分金属化。此外,还提出了通过互连»岩石星«Perc太阳能电池与智能Wire Interonnection技术(SWCT)制造的9细胞演示器模块。2摇滚乐演示器平台2.1演示器机器»摇滚明星的主要目标是开发用于硅太阳能电池高通量金属化的创新机器平台。雄心勃勃是要根据对所应用的旋转印刷方法进行基本和激烈评估的基础来实现具有高技术准备水平(TRL)[1] [1]的机器[2-6]。
低温联合陶瓷LTCC是一个建立的材料平台,用于制造高质量,高性能和高可靠性电子设备;但是,传统上使用了足够宽的加工窗口的系统,具有含PB的眼镜。Micromax™Greentape™LF95C已被引入为无PB的LTCC系统,具有许多有吸引力的物理,热和电子性能,包括可重复的收缩,10 GHz时<0.005的介电介电损失,refire稳定性以及全基因金属化系统。陶瓷通过玻璃粘性流量致密,该流程提供了在宽过程窗口上共弹的能力。高导电性AG金属化,低DF和可重复的收缩和DK使LF95C成为生产高可稳定性电子设备的出色材料平台,同时促进可持续性目标并致力于满足覆盖范围和ROHS计划的精神。关键字陶瓷胶带,陶瓷电路,陶瓷电子设备,无铅,LF95C,低温联合陶瓷,LTCC,无PB,无PB,厚膜。