摘要 本文利用原子电子排布数据预测S、P、D、F、DF等不同区化学元素的反应性。对S区元素以及部分P、D区元素的研究表明,外层电子总量通常与最大反应价电子数相对应。但也描述了一些例外情况。提到了P区高级元素的成对s电子钝化的现象。发现了D8–D12组元素的外层电子总量与平均反应电子数之间的相关性。研究了具体的电子结构来预测F和DF区镧系元素和锕系元素的反应性。此外,还讨论了各种亚轨道(s、p、d和f)外层电子的反应性。
神经形态计算模仿大脑的架构,以创建能量良好的设备。可重新发现的突触对于神经形态计算至关重要,这可以通过抵抗记忆(memristive)切换来实现。基于石墨烯的回忆录已显示出具有理想耐力的非挥发性多重电阻开关。通过第一个原理计算,我们研究了石墨烯与超薄氧化铝覆盖层接触的石墨烯的结构和电子特性,并证明了如何使用电荷掺杂来直接控制其界面共价,从而可逆地控制了在乙烯层中的电导率和分离性之间的切换。我们进一步表明,该提出的机制可以通过石墨烯的p型掺杂来稳定,例如,通过自然出现的缺陷,悬空键或缺陷工程的钝化。
图1:具有标准钝化为离子敏感层的CMOS ISFET,信号转换的扩展门电极和下方的MOSFET,对氢离子(H +)敏感。H +的吸附或释放改变了闸门的电池,这会改变源和排水之间的电流。因此,可以测量与与表面结合的H +离子成正比的电信号变化。与可自定义的特殊过程相比,标准CMOS流程中的ISFET可以开发和制造更具成本效益。,这也面临着几个挑战:首先,作为离子敏感层的标准钝化会引起对最大斜率的敏感性,因为在25°C时NERNST的59 mV/pH值和信号漂移中的59 mV/pH值。此外,ISFET的操作点移动和
氧化隧道钝化接触(TOPCON)和硅杂音(SHJ)的可靠性情况如图1所示,所选降解和故障模式。尤其是半导体相关的降解模式显示降解和恢复路径:光(温度升高)诱导的降解(LETID/LID),UV诱导的降解(UVID)和潜在诱导的降解(PID)。只有在了解降解和恢复路径并提供测试方法时,才能评估其影响。右侧的图1显示了与嵌入,玻璃和接线框有关的常见降解模式或失败。当前的标准测试,尤其是IEC 61215标准的标准测试,无法揭示这些降解或故障模式。由于这些模式与安全有关,因此重要的是要了解原因并开发标准化测试以识别这些可靠性问题。
硅是一种无处不在的半导体材料,可用于多种应用,是现代电子和能量收集的基础。硅基微电子,如今更确切地说是纳米电子,将在不久的将来达到 10 纳米以下的技术节点。在这些尺寸下,纳米尺寸效应(例如量子限制、掺杂的统计问题、表面状态等)开始发挥作用,降低性能和可靠性,甚至导致晶体管完全失效。这些纳米尺寸效应中的几种已经在精心制造的 Si 纳米结构上进行了研究,在那里获得的研究结果可能对于规避 FET 达到单纳米尺寸时出现的问题至关重要。此外,Si 纳米结构的非常规和新颖方法也令人感兴趣,因为它们可以提供替代的解决方法,有助于防止未来技术节点实施的进一步延迟,目标是在降低功耗的情况下提供更高的性能。除了电子晶体管之外,硅纳米结构(如纳米线和纳米粒子)还为传感器、量子器件、操纵器、执行器、光电子学、生物标记等领域的各种跨学科应用开辟了全新的前景。由于表面体积比高,硅纳米结构主要由表面决定,因此需要新的物理和化学知识来了解其特性。这些知识尚未完成并转移到现代晶体管技术中。在能量收集领域,硅光伏电池通过用异质结取代扩散的 p/n 同质结(充当载流子选择性和高度钝化(无复合)接触)提高了效率。这一概念允许研究一系列新材料作为接触,但需要精确了解它们与硅的界面特性。尽管有报道称至少在实验室规模的太阳能电池上转换效率令人印象深刻,但尚未找到结合了正确的电子和光学特性并与工业批量生产兼容的理想异质接触。进一步的跨学科研究必须找到或开发将合适的 Si 表面钝化与载流子选择性隧穿、长期稳定性以及可靠且经济高效的制造相结合的材料。
Cyclotene™ 3000 系列先进电子树脂源自 B 阶段双苯并环丁烯 (BCB) 单体,是 Cyclotene™ 系列产品中的干法蚀刻级产品,专门用作微电子器件制造中的旋涂电介质材料。Cyclotene™ 树脂是低介电常数和低介电损耗材料,具有吸湿性低、不起气、低温固化和平面化性能优异等特点(图 1)。Cyclotene™ 产品的特性如表 1 所示。Cyclotene™ 树脂已广泛应用于各种电子应用,包括硅和复合半导体钝化、层间电介质、平板显示器、IC 封装、集成无源器件、MEMS、晶圆键合和 3D 集成以及光电元件。杜邦公司有四种 Cyclotene™ 3000 系列产品可供商业化供应,如表 2 所示。
摘要:采用快速熔化和凝固的快速传热增材制造方法生产的合金零件与传统工艺制成的材料相比,具有不同的微观结构、特性和性能。本研究比较了采用粉末床熔合工艺制备的SS316L与冷轧SS316L的耐腐蚀和氧化性能。此外,对不锈钢表面氧化膜进行了全面评估,因为该膜对抗腐蚀和氧化性能的影响最大。研究了热处理对增材制造SS316L耐腐蚀和氧化性能的影响。SS316L具有由亚晶胞形成的微观结构,其中局部浓缩的合金元素形成稳定的钝化膜。因此,它比传统的冷轧材料具有更高的耐腐蚀和抗氧化性能。然而,已证实热处理会去除亚晶胞,从而导致耐腐蚀和氧化性能的下降。
或CsCl 40已用于处理CsPbI 3 层以原位生长二维钙钛矿层作为电子阻挡层。 但单个电子阻挡层的性能提升仍然有限,需要新的策略。 在此,CsPbCl 3 QDs和二维Cs 2 PbI 2 Cl 2都沉积在CsPbI 3 钙钛矿层上以形成复合电子阻挡层。 首先,使用CsPbCl 3 QDs环己烷溶液将CsPbCl 3 QDs旋涂在CsPbI 3 钙钛矿层上。 然后,将CsCl乙醇溶液也旋涂在涂有QDs的CsPbI 3 钙钛矿层上以形成二维Cs 2 PbI 2 Cl 2。 这种结构形成了有利于电子阻挡的能级排列。此外晶体缺陷也得到有效钝化,CsPbI 3 C-PSCs的PCE由12.51%提升至16.10%。
在英国,COVID-19策略的生活是基于这样的假设,即高种群混合免疫将继续钝化COVID-19波的严重程度和持续时间。2022年底在新加坡发生的事情表明,这可能是一个脆弱的假设。OMICRON子变量XBB造成了超过45,000例,包括超过36 000次初次感染,尽管疫苗接种率超过90%;入院和死亡人数略有上升。1,2一项关于新加坡再感染病例的一项研究报告说,与疫苗接种和感染的杂种免疫力没有允许对XBB再感染进行保护。1尽管将因果关系分配给免疫记忆很诱人,但3个观察结果受到明显的种群异质性的基础,包括:不同的早期感染,衰减,衰减或诱导和重新挑战变体之间的抗原距离。