,除非探索非传统计算体系结构和创新的存储解决方案,否则计算和数据存储的能源需求将继续呈指数增长。低能计算,包括内存架构,具有解决这些能力和环境挑战的潜力,尤其是四面体(Wurtzite-type)铁电挑战是绩效和与现有半导体过程集成的有希望的选择。Al 1-X sc X n合金是表现为铁电转换的少数四面体材料之一,但是切换极化所需的电场,即,强制性场E C在MV/CM的顺序上,该顺序是MV/CM的顺序,该顺序比传统的传统氧化物氧化物蛋白酶蛋白酶蛋白酶高度高约1-2个数量级。我们不是进一步的工程AL 1 -x SC X N和相关的合金,而是探索计算识别的替代途径,其开关屏障的新材料低于ALN,但仍具有足够高的内在分解场。超越了二进制化合物,我们探索了具有Wurtzite型结构的多元化合物的搜索空间。通过这次大规模搜索,我们确定了四个有希望的三元氮化物和氧化物,包括Mg 2 Pn 3,Mgsin 2,Li 2 Sio 3和Li 2 Geo 3,以实现实验实现和工程。在> 90%的被考虑的多元材料中,我们确定了独特的开关途径和非极性结构,这些结构与基于ALN的Maverials中通常假定的开关机制不同。我们的结果反驳了现有的设计原理,基于降低Wurtzite C/A晶格参数比率,同时支持两个新兴设计原理 - 离子性和键强度。
极化和铁电转变温度之间的关系 ( 5 ) – 即它们可能不是软模式铁电体;(ii) 实现铁电性的新物理机制几乎肯定会带来不同的物理缩放趋势表现和不同的温度、压力和时间特性依赖性;(iii) 这些材料可以在室温或接近室温下加工,具有稳健的特性响应,在某些情况下(例如、Al 1-x B x N)为 40
通过利用铁电/铁弹性切换,在压电传感器中提高了提高功率输出和能量密度。但是,一个问题是,稳定的工作周期通常不能仅由压力驱动。通过在部分螺旋的铁电中使用内部偏置场来解决此问题:材料状态的设计使得压力驱动机械加载过程中的铁弹性切换,而残留场在卸载过程中恢复了极化状态。但是,尽管已验证了此方法,但尚未系统地探索具有最佳性能的工程材料状态的设备。在这项工作中,使用部分固定(预先pol的)铁电中的内部偏置场来指导极化开关,从而产生有效的能量收集循环。设备在1-20 Hz的频率范围内进行了测试和优化,并系统地探索了制造过程中预拆平程度对能量收集性能的影响。发现,将铁电陶瓷预先固定到约25%的完全悬垂状态中会导致一种设备,该设备可以在20 Hz处产生大约26 mW cm-3的活性材料的功率密度,先前工作的改善和比常规PiezoeColectrics的高度提前的命令。但是,最大化功率密度可能会导致残余压力,在准备过程中或服务过程中会损害设备的危害。研究了制造成功率与预拆平水平之间的关系,这表明较高的预拆平程度与较高的存活率相关。这为能量转换与设备鲁棒性平衡提供了基础。
免责声明 本信息是根据美国政府机构赞助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要:在环境污染日益严重的情况下,为推动绿色能源的研究,介电陶瓷储能材料正受到广泛研究,其具有充放电循环极快、耐用性高的优点,在新能源汽车、脉冲电源等方面有广阔的用途。但普通介电陶瓷铁电材料储能密度较低,因此,本文以BaTiO 3 (BT)为基础,划分出8个组分,通过传统固相烧结法,将AB位置替换为不同比例的各类元素,以提高其储能密度,提高BT基铁电材料的储能效率。本文研究了掺杂样品的XRD、Raman、铁电、介电、阻抗测试结果,确定了最佳组分。通过Bi3+、Mg2+、Zn2+、Ta5+、Nb5+五种元素掺入制备了(1-x)BT-xBi(Mg1/3Zn1/3Ta1/6Nb1/6)O3系列陶瓷。随着掺杂量x的增加,电滞回线变细,饱和极化强度与剩余极化强度下降,储能密度先上升后下降。x=0.08以后的介电特性呈现平缓的介电峰,说明已经形成了铁电弛豫。最佳组分x=0.12的储能密度和效率分别达到了1.75J/cm3和75%,居里温度约为-20◦C,具有在室温下使用的潜力。
铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。
本文介绍了在 LiNbO 3 和 LiNbO 3 :Fe 衬底上采用水热法在低温下生长的 ZnO 纳米棒组成的半导体铁电结构的特性。通过扫描电子显微镜、光致发光和分光光度法分析了所得结构。给出了 SEM 图像和光谱、吸收光谱、紫外和可见光范围内的光致发光光谱。研究表明,可以与其他方法一起使用水热法合成 Zn(NO 3 ) 2 6H 2 O 和 C 6 H 12 N 4 来获得 ZnO 纳米棒阵列,作为基于表面活性剂的紫外线辐射传感器的敏感元件。关键词:纳米棒;光致发光;扫描电子显微镜;吸收光谱 PACS:68.37.Hk,78.55.Ap,42.25.Bs,61.46.Km
铁电体 (FE) 具有自发和可切换的电极化,不仅在基础科学领域,而且在器件应用领域都具有重要意义。传统的铁电性,例如钙钛矿氧化物 BaTiO 3 中的铁电性,归因于 Ti d 0 和氧 p 态之间的 pd 杂化,其中长程库仑力优于短程排斥力 [1]。结果,BaTiO 3 中 Ti 偏心位移被诱导,从而破坏了中心对称性。在钙钛矿超晶格如ABO3/A'BO3和层状钙钛矿(ABO3)2(AO)[2-4]中发现的“混合不当”铁电性具有不同的起源,它源于A位上的极性模式与BO6八面体的两个非极性倾斜模式之间的三线性耦合。该机制更多地依赖于晶格的几何形状(即不同层上A阳离子的反极性位移之间的非完全补偿),而不是像传统FE那样依赖于静电力[5,6]。已经提出了不同的方法来操纵铁电性。施加在薄膜上的应变可以影响BaTiO3的电极化,也可以使量子顺电的SrTiO3变为铁电体,甚至提高其转变温度[7,8]。电荷掺杂已被证明是调节铁电性和创造新相的另一种有效方式。在传统铁电材料如 LiNbO 3 和 BaTiO 3 中,可以通过增加掺杂载流子的数量来抑制铁电位移 [9–12]。而在层状钙钛矿的三线性 Ruddlesden-Popper 相中,最近的一项研究表明,在 A 3 Sn 2 O 7 中静电掺杂会导致八面体旋转增加 [13],从而增强极化。由于载流子可以屏蔽长程相互作用并倾向于保持中心对称性,因此铁电性与金属性共存是违反直觉的。这种不寻常的共存直到 2013 年才被发现,当时 LiOsO 3 被认定为第一个“极性金属” [14] − 比它的理论预测晚了六十年 [15]。最近的研究表明,二维拓扑半金属WTe 2 也表现出可切换的极化[16]。
摘要 - 我们报告了ALSCN屏障宽带氮化物晶体管中铁电盖的首次观察。通过直接外观生长生长所实现的这些铁热型装置,其中一类新的铁电晶体管本身是极性的,其中半导体是极性的,并且结晶铁电屏障与底物搭配。迄今为止,此处报道的铁热室使用最薄的氮化物高和铁电屏障,以在4 A/mm处提供最高的电流,以及在任何铁电晶体管中观察到的最高速度ALSCN晶体管。ferrohemts hysteric i d-v gs环,阈值斜率低于玻尔兹曼的极限。对照ALN屏障Hemt既不表现出滞后,也不表现出子螺栓行为。这些结果将第一个外延高K和铁电屏障技术引入了RF和MM-Wave电子设备,但它们也引起了人们的兴趣,它是将数字电子中记忆和逻辑功能相结合的新材料平台。
摘要HF 0。5 ZR 0。 5 O 2(Hzo)基于基于铁的铁电场晶体管(FEFET)Synapse是符合处尺度深神经网络(DNN)应用的承诺候选者,因为其高对称性,准确的准确性,良好的准确性和快速运行速度。 然而,随着时间的流逝,由去极化场引起的remanent极化(P R)的降解尚未有效地解决,从而极大地影响了受过训练的DNN的准确性。 在这项研究中,我们证明了使用FE模式进行高速重量训练的铁电(Fe)抗性切换(RS)可切换突触,并进行稳定的重量存储的RS模式,以克服准确性降解。 FE-RS杂交特性是通过具有非对称电极的基于HZO的金属 - 有线金属(MFM)电容器来实现的,最佳的Fe耐力以及最可靠的RS行为可以通过测试多种电极材料来证明。 在FE和RS模式下都可以实现高内存窗口。 通过这种设计,通过网络仿真验证,随着时间的流逝,保持出色的精度。5 ZR 0。5 O 2(Hzo)基于基于铁的铁电场晶体管(FEFET)Synapse是符合处尺度深神经网络(DNN)应用的承诺候选者,因为其高对称性,准确的准确性,良好的准确性和快速运行速度。然而,随着时间的流逝,由去极化场引起的remanent极化(P R)的降解尚未有效地解决,从而极大地影响了受过训练的DNN的准确性。在这项研究中,我们证明了使用FE模式进行高速重量训练的铁电(Fe)抗性切换(RS)可切换突触,并进行稳定的重量存储的RS模式,以克服准确性降解。FE-RS杂交特性是通过具有非对称电极的基于HZO的金属 - 有线金属(MFM)电容器来实现的,最佳的Fe耐力以及最可靠的RS行为可以通过测试多种电极材料来证明。在FE和RS模式下都可以实现高内存窗口。通过这种设计,通过网络仿真验证,随着时间的流逝,保持出色的精度。