引言口腔卫生在口腔健康中很重要,因为它意味着对牙菌菌细菌的主要控制,这是由于条件和援助要求,要么是口腔传染病的危险因素。因此,我们患有智障患者(ID)的口腔卫生不良,这使得诸如龋齿(龋齿),牙龈炎和牙周疾病之类的口腔病理的高患病率(横截面),所有这些疾病均由细菌pla plae pla pla pla pla pla pla pla pla pla [1-4-4-4-4-4-4-4-4-4-4-4)。口腔是由软组织,硬组织和唾液组成的空间,该空间由细菌,真菌,病毒,病毒,支原体,原生动物等微生物殖民,当时是细菌斑块的一部分,当钙化并形成牙齿或牙齿钙或tartar时。先前的研究表达了伦敦J.[5],是仅次于肠道的第二大微生物群落。对人口腔牙垢中祖先微生物组的研究揭示了基于生命功能的人与微生物之间的关联的重要性,例如急性和慢性疾病的作用及其生物人类学进化,随着时间的流逝[6]。祖先,在古代文明中证明了S. utans和牙龈疟原虫的存在,特别是来自智利南部圭蒂卡斯群岛的Chonoan [7,8]。通过人类研究的遗迹,可视化兼容的传染病,例如龋齿,牙周病和骨骼病变,可视化,伴随着口腔卫生不良,就像ID患者中一样[1]。它们可能与符合他们没有口腔卫生习惯的文化和生理因素有关[7,8]。随后的分子生物学研究,例如间接免疫荧光技术和PCR扩增,证明了Chonoan(Chonos)牙齿牙垢中的微生物存在[9,10]。在古代文明中存在两个或多种变体的PCR技术峰会物种,特别是在Chonoan中的p.gingivalis,由于微生物在5个复合物中存在的牙周疾病频率很高,因此,尺寸微生物中的微生物中存在的一部分是一个复杂的网络,p。根据[13]。在古代文明中存在两个或多种变体的PCR技术峰会物种,特别是在Chonoan中的p.gingivalis,由于微生物在5个复合物中存在的牙周疾病频率很高,因此,尺寸微生物中的微生物中存在的一部分是一个复杂的网络,p。根据[13]。
摘要:嗜热链球菌 - 感染噬菌体是乳制品工业中的一个主要问题,尤其是与嗜热生产系统有关的问题。因此,已经进行了许多与全球乳制品行动中这种噬菌体的生物多样性有关的研究。在当前的综述中,我们概述了这些噬菌体的遗传和形态多样性,并通过比较蛋白质组的比较蛋白质组分析复制噬菌体的复制和形态发生模块来强调噬菌体中遗传镶嵌物的来源和程度。评估了选定的噬菌体编码受体结合蛋白(RBP)的系统发育,表明在某些情况下,RBP编码基因已分别获取到形态发生模块,从而突出了这些噬菌体的适应性。这篇综述进一步强调了这些噬菌体的遗传多样性群体所取得的显着进步,同时还总结了该研究领域的剩余知识差距。
药用植物已获得其生物活性化合物的可见性,其抗氧化剂,抗菌和抗真菌特性可用于各种应用,例如在药品,食品和生物控制行业中。秘鲁是一个富含植物群的国家,它具有多种植物物种,但是,对具有药理潜力的生物活性化合物的研究很少。因此,本研究的目的是评估秘鲁高地众所周知的四藻蛋白克里斯塔塔(Tetraglochin cristata)新鲜叶片提取物的抗氧化,抗菌和抗真菌活性。canghy样品,以比较由于环境和高度差异而导致的财产变异性。提取物针对两种类型的细菌,金黄色葡萄球菌和大肠杆菌,以及两种真菌,白色念珠菌和阴茎公共。使用DPPH方法评估抗氧化活性。 结果表明抗氧化活性很高,cusco样品的半末端抑制浓度(IC 50)为(92.3±1.3)μg/ml,arequipa样品为(98.2±1.7)μg/ml。 此外,提取物有效地抑制了P. commun,显示出较高的抗真菌活性。 这项研究强调了CANGHY生物活性化合物的药理潜力以及地理多样性在这些特性变异性中的重要性。抗氧化活性。结果表明抗氧化活性很高,cusco样品的半末端抑制浓度(IC 50)为(92.3±1.3)μg/ml,arequipa样品为(98.2±1.7)μg/ml。此外,提取物有效地抑制了P. commun,显示出较高的抗真菌活性。这项研究强调了CANGHY生物活性化合物的药理潜力以及地理多样性在这些特性变异性中的重要性。
。CC-BY-NC 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 2 月 2 日发布了此版本。;https://doi.org/10.1101/2025.01.29.635275 doi:bioRxiv 预印本
抽象的CRISPR-CAS系统通过检测和切割侵入外源DNA,提供对病毒和质粒的适应性免疫的细菌和古细菌。修改版本可以被用作一种生物技术工具,用于在目标基因座上进行精确基因组编辑。在这里,我们开发了一种复制质粒,该质粒构成了CRISPR-CAS9系统,用于在机会性人体病原体肺炎链球菌中进行的ounterselection通过ounterselection进行RNA可编程的基因组编辑。特别是,我们删除了一种方法,用于制作目标无标记的基因敲除和大范围的缺失。引入了精确的双链断裂(DSB)后,将细胞的DNA修复机理(HDR)的DNA修复机理(HDR)剥削以选择成功的转化剂。这是通过将模板DNA碎片转换而成的,该模板DNA碎片会重新组合基因组中并消除对Cas9核酸内切酶靶标的识别。接下来,可以通过在非疗法温度下种植对复制的温度敏感的质量轻松治愈新工程的应变。这允许连续的基因组编辑。使用此系统,我们设计了一个菌株,其中三个主要的毒力因子已删除。此处开发的方法可能会适用于其他革兰氏阳性细菌。
摘要:已知白色念珠菌和链球菌在口腔中彼此协同相互作用。例如,葡萄糖基转移酶B(gtfb)由链球菌分泌,可以与白色念珠菌细胞表面结合,从而促进双物种生物膜形成。然而,介导与链球菌相互作用的真菌因子尚不清楚。白色念珠菌粘附素ALS1,ALS3和HWP1是白色念珠菌单物种生物膜形成中的关键参与者,但尚未评估它们在与S. Mutans相互作用中的作用(如果有的话)。在这里,我们研究了白色念珠菌细胞壁粘附蛋白ALS1,ALS3和HWP1在用链球菌形成双种物种生物膜上的作用。我们评估了白色念珠菌野生型ALS1 ∆ / ∆,ALS3 ∆ / ∆,ALS1 ∆ / ∆ / ∆ / ∆ / ALS3 ∆ / ∆ / ∆ / ∆ / ∆ / ∆ / ∆菌株,通过测量厚度的厚度,构造,构造,构造,构造,构造,代理,代理,构造,构造厚度,将双种物种形成二重种菌株。生物膜。我们观察到,白色念珠菌野生型菌株在这些不同的生物纤维分析中形成了增强的双种物种生物膜,并证实了白色念珠菌和葡萄链梭菌在生物纤维上下文中协同相互作用。我们的结果表明,白色念珠菌ALS1和HWP1是与S. mutans相互作用的主要参与者,因为当ALS1 ∆ / ∆ / ∆或HWP1Δ / ∆ / ∆菌株与链球菌在双重物种生物膜中培养双重生物膜形成。als3似乎在与双种物种生物膜形成中与S. mutans相互作用中似乎并没有明确的作用。总体而言,我们的数据表明白色念珠菌粘合剂ALS1和HWP1功能可调节与链球菌的相互作用,并且可能是未来治疗剂的潜在靶标。
A dynamic subpopulation of CRISPR-Cas overexpressers allows Streptococcus pyogenes to rapidly respond to phage Marie J. Stoltzfus 1 , Rachael E. Workman 1 , Nicholas C. Keith 1 , Joshua W. Modell 1 * 1 Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA *Correspondence: jmodell1@jhmi.edu摘要许多CRISPR-CAS系统,可为细菌提供适应性免疫,以防止噬菌体,在其本土宿主中受到转录抑制。如何根据需要诱导CRISPR-CAS的表达,例如在噬菌体感染期间,人们对此仍然了解不足。在链球菌为链球菌中,一种非典型的指南RNA TRACR-L指导Cas9自动燃烧自己的启动子。在这里,我们描述了具有破坏Cas9结合并导致CRISPR-CAS过表达的单个突变的细胞的动态亚群。CAS9通过提高TRACR-L目标部位的突变率来积极扩大该人群。过表达者表现出更高的记忆形成率,旧记忆的效力更强,并且相对于野生型细胞具有更大的记忆存储能力,而野生型细胞非常容易受到噬菌体感染的影响。然而,在没有噬菌体的情况下,CRISPR-CAS过表达会降低健身。我们建议CRISPR-CAS过表达者是噬菌体防御中的关键参与者,使细菌种群能够对噬菌体的快速转录反应,而无需任何一个单元格中的短暂变化。引言有效的免疫系统必须迅速识别和破坏外国威胁,同时避免宿主内的类似主题。细菌编码了越来越多的免疫效应子来防御噬菌体(噬菌体)和质粒,但是这些系统如何平衡免疫力和自身免疫仍然是一个悬而未决的问题。CRISPR-CAS系统可为细菌提供针对异物核酸的适应性免疫,已作为转化基因编辑工具,但是在许多细胞类型中,CAS核酸酶的异源过表达是有毒的1-4。在其本地宿主中,CRISPR-CAS系统通常在没有噬菌体或其他压力源的情况下被转录抑制。尽管这种抑制能够减轻自身免疫性,但尚不清楚(i)原生CIRSPR-CAS启动子是否足够强大以在其解除抑制状态下引起自身免疫性以及(ii)如何根据需要暂时诱导CRISPR-CAS表达。在某些细菌和古细菌物种中,CRISPR-CAS表达对噬菌体感染的直接反应增加了5-9。但是,对噬菌体感染的任何反应都是与相对较短的裂解周期的种族,这可能会限制这种反应的效用。另一种策略是在噬菌体到来之前增加CRISPR-CAS的表达。的确,许多CRISPR-CAS阻遏物受环境信号的调节,可能会预测噬菌体感染,包括种群密度,包络压力和营养供应10-13。然而,噬菌体感染可能会或可能不会先于这些信号,我们想知道是否可能存在更可靠的机制来为噬菌体感染制备细胞。CRISPR-CAS免疫包括三个阶段:适应,生物发生和干扰。在适应性链球菌中II-A型系统,30 bp的噬菌体DNA或“间隔者”中被从噬菌体中捕获,并将其掺入CRISPR阵列的5'末端,并将
植物病毒对全球农业构成了重大威胁,并需要有效的工具才能及时检测。我们提出了AutoPvprimer,这是一种创新的管道,该管道整合人工智能(AI)和机器学习以加速植物病毒引物的发展。管道使用Biopython从NCBI数据库自动检索不同的基因组序列,以增加后续引物设计的鲁棒性。design_-primers_with_tuning模块使用随机森林分类器,可优化参数并为不同的实验条件提供灵活性。质量控制措施,包括评估Poly-X含量和熔化温度,提高了引物的可靠性。AUTOPVPRIMER独有的是Visualize_primer_dimer模块,它支持引物二聚体的可视化评估,这是其他工具中缺少的功能。引物特异性通过引物爆炸验证,这有助于管道的整体效率。AutoPvprimer已成功地应用于番茄镶嵌病毒,证明其适应性和效率。模块化设计允许用户自定义,并将适用性扩展到不同的植物病毒和实验场景。管道代表了引物设计的重大进展,并为研究人员提供了加速分子生物学实验的有效工具。未来的发展旨在扩展兼容性并纳入用户反馈,以巩固AutoPvprimer,作为对生物信息学工具箱的创新贡献,也是提高植物病毒学研究的有希望的资源。
1 魁北克拉瓦尔大学医院研究中心,魁北克拉瓦尔大学,加拿大魁北克拉瓦尔大学 G1V 4G2; 2 魁北克拉瓦尔大学心脏病学和肺病学研究所研究中心 (CRIUCPQ) – 加拿大魁北克拉瓦尔大学,魁北克 G1V 4G5; 3 加拿大魁北克省舍布鲁克 J1H 5N4 舍布鲁克大学医院 (CHUS) 儿科部和 CRCHUS 医学遗传学系; 4 加拿大魁北克拉瓦尔大学癌症研究中心,魁北克拉瓦尔 G1V 0A6,魁北克拉瓦尔5 加拿大魁北克拉瓦尔大学科学与工程学院生物化学、微生物学和生物信息学系,魁北克拉瓦尔大学,魁北克 G1V 0A6,加拿大; 6 加拿大魁北克拉瓦尔大学牙科学院口腔生态学研究组,魁北克省 G1V 0A6; 7 加拿大魁北克拉瓦尔大学牙科学院 Félix d'Hérelle 细菌病毒参考中心,魁北克拉瓦尔大学 G1V 0A6,加拿大; 8 生物大分子的结构和功能,国家科学研究中心 (CNRS),Luminy Campus,13288 Marseille Cedex 09,法国; 9 生物大分子结构与功能,艾克斯-马赛大学,吕米尼校区,13288 Marseille Cedex 09,法国
abiopuretm基因组DNA方案用于从细菌生长中提取DNA。使用定量荧光计设备测量DNA样品的浓度(20 ng/μl)。宏company提供了冻干状态的引物:S。sanguis-f 5`-ggatagtggctcagggcagccagccagt t-3`,S。sanguis-r 5`-gaacagttgctgctgcttgcttgcttgtgtgtc- 3`为获得储备溶液,通过将冻干的引物分散在300μL无核酸酶的水中,可以实现100 pmol/µl的浓度。通过将10μl的储备底漆与90μl无核酸酶的水混合,制备了浓度为10 pmol/μl的溶液。按照制造商的说明,通过将10μL的主混合与1μl的前向引物,奖励底漆,6μl无核酸酶的无核酸酶水和2μL样品DNA混合,从而产生20μL的最终溶液。