为了成功适应环境,动物会不断调整自己的行为,确保其适应当前环境。它们的神经系统必须快速处理传入的刺激,以区分相关信息和不相关信息,从而实现集中注意力并支持记忆形成和行为调节等更高级的执行功能。感觉过滤在一定程度上由习惯化这个基本且保守的过程介导 [1]。习惯化是所有动物都表现出的最简单的非联想学习形式,其定义为对重复的、不显著的刺激的反应性逐渐下降 [2],并且不是由于感觉适应或运动疲劳 [3]。值得注意的是,已有研究表明,动物也能对威胁性和潜在致命的刺激形成习惯,并以此作为修改其行为策略以避免危险刺激的一种手段 [4]。习惯化的行为参数和细胞机制受突触可塑性机制控制,这种机制通过改变神经递质信号来调节兴奋和抑制的平衡[5-9],但我们对介导习惯化的关键基因的了解并不完整。过滤机制受损是许多常见神经系统疾病的标志,因此习惯化缺陷已被用作诊断工具[10]。习惯化缺陷与自闭症谱系障碍(ASD)[11-13]、脆性X 综合征[14]、精神分裂症[15]、亨廷顿氏病[16]、注意力缺陷多动障碍(ADHD)[17]、帕金森病[18]、图雷特综合征[19]和偏头痛[20]有关。剖析调节感觉过滤的潜在遗传机制可帮助我们了解疾病的病因、确定疾病的遗传易感性以及找到潜在的治疗靶点。了解习惯化的遗传、细胞和行为方面对于理解正常神经回路如何处理感觉信息至关重要。斑马鱼可以表现出受经验调节的感觉诱发运动行为(到受精后五天(dpf)为止)。声学刺激会在斑马鱼身上引发两种不同的运动反应之一:短延迟 C 形弯曲(SLC),通常是对高强度刺激的反应,以及长延迟 C 形弯曲(LLC),通常是对低强度刺激的反应 [ 21 ]。这些行为由简单、特征明确的回路驱动,可进行可视化和基因操作 [ 22 ]。 SLC 是由激活两个双侧 Mauthner 后脑网状脊髓神经元之一触发的,这两个神经元是听觉惊吓反应 (ASR) 的指挥神经元 [ 23 ]。Mauthner 神经元在功能上类似于尾桥脑网状核 (PnC) 的巨型神经元,这些神经元从耳蜗神经接收输入,并输出到脊髓中的运动神经元,从而驱动哺乳动物的惊吓反应 [ 24 – 26 ]。虽然斑马鱼的神经回路比哺乳动物的简单,但正是这种简单性使其成为研究感觉过滤背后的遗传、细胞和行为机制的有用工具。为了确定对介导习惯化学习很重要的基因,我们将全基因组正向遗传筛选 [ 27 ] 与高通量平台相结合,以进行无偏的听觉惊吓分析 [ 28 ]。这种方法产生了几个听觉惊吓习惯化所需的基因,包括棕榈酰转移酶亨廷顿相互作用蛋白 14 (hip14) [ 29 ],
肿瘤切除术中神经活动的监测、神经外科手术[6–8]中慢性植入物中癫痫病灶的识别[9–11]以及神经假体。[12–17]为了在保留大量任务相关信息的同时尽量减少侵入性,人们对皮层电图 (ECoG) 和微皮层电图 (μ ECoG) 技术进行了广泛的研究。[18–22]对于皮层内微电极,由于与信号源的距离增加,ECoG 和 μ ECoG 都表现出一些固有的局限性。[23]此外,由于电极小型化和随之而来的阻抗增加,μ ECoG 会受到噪声增强的影响。[24,25]在这种情况下,脑记录将从原位第一级信号放大策略中受益匪浅。在克服这些限制的各种策略中,半导体技术已用于神经生理学应用。无机场效应晶体管已成功证明可作为体外生物电活动传感器,[26–28] 但它们在体内的应用受到无机半导体的化学和机械特性的限制,尤其是暴露于水环境时。[29] 这使得无机晶体管沦为微电极集成多路复用器的角色。[30]
http://dx.doi.org/10.5755/j01.ee.32.4.28459 太阳辐射是现代社会依赖的可再生资源之一,它部分取代了现有的化石燃料能源。了解能源的生产方式必须与了解能源的消耗方式相辅相成。在经济背景下,收益来自整个供应链的可预测性。本文对如何使用标准循环神经网络、长短期记忆和门控循环单元来预测光伏 (PV) 系统的发电量进行了全面的研究。这种方法可用于太阳能甚至风能预测的其他用例,因为它为处理天气数据和循环人工神经网络提供了坚实的基础,而天气数据和循环人工神经网络是任何智能电网管理系统的核心。很少有研究探讨如何实施这些模型,更少的研究比较了不同模型类型的结果。使用的数据包括一小时分辨率的天气和发电量数据。对数据进行了进一步的预处理,以揭示最大信息量。选择了最有效的模型参数进行预测。太阳能在欧盟气候行动和欧洲绿色协议中扮演着重要的可再生能源角色。根据这些举措,实施了重要的法规,并为那些拥有解决开放点所需能力的人提供了财政资源。通过利用基于神经的预测方法,可以确保急需的可预测性,从而为部署和采用更多可再生技术提供所需的灵活性和稳健性。
摘要 本文提出了一种利用新型点对点 (P2P) 电力交易辅助纳米电网集群电源管理的方法。直流纳米电网的实时功率损耗较低,适合 P2P 交易。本文通过新提出的 P2P 交易方案降低了涉及不同类型光伏 (PV) 发电(作为次要能源)的集群的电力成本。对于单个集群的电源管理,采用多目标优化来同时最小化总功耗、电网功耗和调度导致的本地总延迟。集群自供光伏电力的暂时盈余可以通过 P2P 交易出售给另一个暂时电力短缺的集群。在 P2P 交易中,买卖双方采用合作博弈模型来最大化他们的福利。为了提高 P2P 交易效率,每个集群的电源管理都考虑了负载需求和光伏发电的预测,以解决负载需求和光伏发电之间的瞬时不平衡。采用门控循环单元网络预测未来负荷需求,纳米电网集群中的光伏发电可降低 29.2% 的电力成本。
摘要背景塔利米烯Laherparepvec(T-VEC)是一种经许可的疗法,可用于欧洲的IIIB-IVM1A期黑色素瘤患者,可注射,无法切除的转移性病变。批准基于黑色素瘤研究中的Oncovex关键试验,该试验还包括远处转移的患者,并证明总体反应率(ORR)为40.5%,完全反应(CR)率为16.6%。目的这项研究的目的是评估在现实生活中用T-VEC治疗的黑色素瘤患者的结果。基于来自奥地利,瑞士和德国南部10个黑色素瘤中心的数据的方法,我们进行了回顾性图表审查,其中包括88名患者(44名男性,44位女性),中位年龄为72岁(36-95岁)在2016年5月至2020年1月至2020年1月。结果88例符合分析的纳入标准。ORR为63.7%。38例(43.2%)显示CR,18(20.5%)的部分反应,8(9.1%)患有稳定的疾病,24例(27.3%)患者患有进行性疾病。中位治疗期为19周(范围:1-65),平均使用11剂(范围:1-36)。39(45.3%)患者发生了不良事件,大部分是轻度I级(64.1%)。 结论T-VEC现实生活中的队列治疗表现出很高的ORR和大量耐用CR。39(45.3%)患者发生了不良事件,大部分是轻度I级(64.1%)。结论T-VEC现实生活中的队列治疗表现出很高的ORR和大量耐用CR。
理解磁铁矿 (Fe3O4) — 一种强关联磁性氧化物 — 中的 Verwey 跃迁是一个百年老话题,由于最近的光谱研究揭示了它的轨道细节,它重新引起了人们的极大关注。这里报道了通过使用离子门控调整轨道配置来调制 Verwey 跃迁。在外延磁铁矿薄膜中,绝缘的 Verwey 态可以连续调整为金属态,表明低温三聚体态可以通过栅极诱导的氧空位和质子掺杂可控地金属化。离子门控还可以反转异常霍尔系数的符号,这表明金属化与具有竞争自旋的新型载流子的存在有关。与符号反转相关的可变自旋取向源于栅极诱导的氧空位驱动的结构扭曲。
摘要 - 在这项工作中,我们建议使用一个深入的学习框架来解码人脑活动的脑电图(EEG)信号。更具体地,我们学习了一个端到端模型,该模型通过从人类神经活动中收集的脑电图数据识别自然图像或运动图像。为了捕获长脑电图序列中编码的时间信息,我们首先在脑电图信号上采用增强版本的变压器,即门控变压器,以学习沿一系列嵌入式的特征代表。然后,使用完全连接的软磁层来预测解码表示的分类结果。为了证明封闭式变压器方法的有效性,我们针对人脑视觉数据集的图像分类任务进行了实验,以及针对运动图像数据集的分类任务。实验结果表明,与广泛用于脑电图分类的多种现有方法相比,我们的方法实现了新的状态性能。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2021 年 5 月 27 日发布。;https://doi.org/10.1101/2021.05.26.445794 doi:bioRxiv preprint
抽象巨噬细胞是体内最重要的吞噬细胞。然而,肿瘤微环境可以影响巨噬细胞的功能和极化,并形成肿瘤相关的巨噬细胞(TAM)。通常,肿瘤中TAM的丰度与预后不良密切相关。临床前研究已经确定了调节肿瘤进展过程中TAM的浸润和极化的重要途径。此外,已经研究了针对肿瘤中TAM的潜在治疗策略,包括抑制肥大募集到肿瘤对肿瘤的抑制,对抗肿瘤表型的功能重新极化以及其他会导致巨噬细胞介导的细胞外细胞吞噬细胞和静脉内的细胞癌细胞的治疗策略。因此,随着肿瘤免疫疗法的影响不断增加,现在正在讨论针对TAM的新抗肿瘤策略。
摘要:多末端电双层晶体管最近在模仿合成和神经功能方面引起了广泛的兴趣。在这项工作中,提出了一个离子凝胶的石墨烯突触晶体管,以通过利用石墨烯的双极性能和离子 - 凝胶的离子电导率来模仿基本的合成行为。通过自旋涂层过程将离子 - 凝胶介电作用沉积到石墨烯膜上。我们分别将顶门和石墨烯通道分别为突触前和突触后末端。基本的突触功能成功模仿,包括兴奋性突触后电流(EPSC),峰值振幅和持续时间对EPSC的影响以及配对脉冲促进(PPF)。这项工作可以促进石墨烯突触晶体管在柔性电子中的应用。