摘要:在强度不断增加的运动过程中,人体会根据实际需求通过不同的机制转换能量。人体的能量利用可分为三个阶段,每个阶段的特点是不同的代谢过程,并由两个阈值点分隔,即有氧阈值 (AerT) 和无氧阈值 (AnT)。这些阈值在确定的运动强度 (工作量) 值时发生,并且会因人而异。它们被视为运动能力的指标,可用于个性化体育活动计划。它们通常通过通气或代谢变量检测,需要昂贵的设备和侵入性测量。最近,人们特别关注 AerT,这是一个特别适用于超重和肥胖人群的参数,可用于确定减肥和增强体质的最佳运动强度。本研究旨在提出一种新程序,使用复发分析 (RQA) 自动识别 AerT,该程序仅依赖心率时间序列,该时间序列是从一群年轻运动员在自行车功率计上进行亚最大增量运动测试 (心肺运动测试, CPET) 期间获得的。我们发现,确定性最小值(根据时期复发量化 (RQE) 方法计算出的 RQA 特征)可识别发生一般代谢转变的时间点。在这些转变中,基于确定性最小值的最大凸度的标准可以检测到第一个代谢阈值。普通最小积回归分析表明,RQA 估计的与 AerT 相对应的耗氧量 VO 2 、心率 (HR) 和工作量的值与 CPET 估计的值高度相关 (r > 0.64)。 HR 和 VO2 的平均百分比差异均小于 2%,工作负荷的平均百分比差异小于 11%。AerT 时 HR 的技术误差小于 8%;AerT 时所有变量的组内相关系数值均适中(≥ 0.66)。因此,该系统是一种仅依靠心率时间序列检测 AerT 的有用方法,一旦针对不同活动进行了验证,将来就可以轻松应用于从便携式心率监测器获取数据的应用中。
医学图像中的脑肿瘤在形状和大小方面具有高度多样性。一些数据发现了肿瘤组织和正常组织之间的一种形式,而了解肿瘤的轮廓和特征成为搜索的关键部分。通过利用机器学习能力,机器被赋予几个变量并在一定程度上提供决策,它们已经广泛地给出了支持决策主体的决策。本研究将直方图选择的阈值选择方法应用于 CT 扫描数据,而适当的阈值选择方法则相应地选择肿瘤位置。此外,卷积神经网络 (CNN) 用于对所选图像是否为肿瘤进行分类。使用 CT 扫描数据和计算实验,该算法最终得到批准并给出准确率为 75.42% 的脑部分类。
⋆ 每个基本链接都有成功概率 pi ,1 ≤ i ≤ M ,由所有损失元素组成。⋆ 每个量子存储器都有截止时间 t ⋆ ⇒ 截止试验次数 n ⋆ = ⌊ Rt ⋆ ⌋ 。⋆ 对于“良好”的网络,pi 和 n ⋆ 的哪些值是可以接受的?
植物生长和性能的条件非常复杂。尽管温度及其对骨骼农作物的影响是该项目的重点,但农作物的生长和产量受到其他降至其他因素的显着影响,例如值(包括日长度),降雨量(数量和燃料),风(降雨量),风(Direcfion和velocity and velocity and velocity)以及Co 2 Conconrafion。其他植物生长和性能因素包括土壤(水分含量,结构,质地,营养等)和害虫,疾病和杂草。温度对围培养作物的生长,发育和产量(包括产品质量)具有显着影响。因此,温度在大多数嗜植物的种植的地方都具有很大的作用,并且这些作物的性能(可销售的产量和质量)(Krug,1997)。
尽管该策略是针对青光眼研究而优化的,但它也可以检测其他类型的缺陷。如果患者患有神经系统疾病(或检查结果表明这种情况),可以使用针对此类病例进行优化的 SPARK 策略变体。它甚至比青光眼病例更短,这有助于检查某些协作程度有限的患者。它采用三个连续阶段,在某些情况下,第一阶段可能足以进行定向诊断,对于无法延长检查时间的患者尤其有用。
摘要 —本文提出了一种通过模糊 Otsu 阈值形态 (FOTM) 算法分割脑肿瘤的方法。由于脑肿瘤的增加,获取的磁共振成像 (MRI) 数量也相应增加。因此,能够自动分割和检测脑肿瘤的高精度算法将对治疗计划和诊断具有潜在的潜力。为了解决这个问题,提出了一种利用 FOTM 算法从最不对称的部分分割脑肿瘤的新方法。此外,使用颜色归一化、噪声消除和强度偏差校正作为预处理阶段,虽然这在 FOTM 算法中并不常见,但与数据分割一起证明对于 MRI 图像中脑肿瘤的分割非常成功。结果清楚地表明,图像神经胶质瘤、图像脑膜瘤和图像垂体的平均准确度指数分别为 93.77%、94.32% 和 94.37%。索引术语——脑肿瘤、分割、FuzzyOtsu 阈值、形态学。
当前用于对噪声量子处理器进行基准测试的方法通常测量平均错误率或过程保真度。然而,容错量子误差校正的阈值是以最坏情况错误率(通过钻石范数定义)表示的,这可能与平均错误率相差几个数量级。解决这种差异的一种方法是使用随机编译 (RC) 等技术对量子门的物理实现进行随机化。在这项工作中,我们使用门集断层扫描对一组双量子位逻辑门进行精确表征,以研究超导量子处理器上的 RC。我们发现,在 RC 下,门错误可以通过随机泡利噪声模型准确描述,而没有相干误差,并且空间相关的相干误差和非马尔可夫误差受到强烈抑制。我们进一步表明,对于随机编译的门,平均错误率和最坏情况错误率相等,并且测量到我们的门集的最大最坏情况误差为 0.0197(3)。我们的结果表明,当且仅当门是通过调整噪声的随机化方法实现的,随机化基准是验证量子处理器的错误率是否低于容错阈值以及限制近期算法的失败率的可行途径。
研究设施位于马里兰州盖瑟斯堡 20899 和科罗拉多州博尔德 80303。主要技术运营单位及其主要活动如下所列。如需更多信息,请联系公共问询台,电话:301-975-3058。
量子误差校正是实现大规模通用量子计算的关键步骤,实现量子误差校正的条件是,每个操作步骤的误差概率必须低于某个阈值。这要求Qubits的质量和量子门的精度可以通过实验达到一定水平。我们首先讨论量子误差的机制:量子门的精度对应于单一操作员误差,量子量的质量归因于腐蚀性。然后,根据表面代码误差校正的阈值,我们证明了量子门限制的最小值不应在误差概率p的情况下小于1 -p,并发现可以用于误差校正的量子量的自然脱谐度时间。这为Qubits准备和实验性执行量子操作提供了某种理论支持。
脑机接口正在利用细胞外记录中的神经尖峰波形或尖峰时间实现重要的新功能 [1],[2]。尖峰检测是从记录中提取神经尖峰的重要步骤。它不仅可以提取用于神经活动解码的信息,还可以将数据带宽减少数百甚至数千倍,从而实现无线传输并实现完全植入神经接口而无需经皮导线突破皮肤。尖峰检测性能对于保存神经信息和避免解码精度下降至关重要。阈值是尖峰检测的最常用方法,超过阈值的值被视为尖峰。面对不断变化的大脑环境,自适应且稳健的阈值至关重要。文献中提出了许多用于定义阈值的算法。一种方法是使用计算算法 [3],[4],例如短时傅立叶变换、小波变换和模板匹配。还有一些算法方法,例如反馈控制阈值 [5]。最常见的方法是根据信号统计数据设置阈值。噪声统计数据被广泛用于设置阈值。还提出了一种硬件高效估计方法,使用乘数将平均值/中位数/标准差/均方根值设置为阈值 [6]。其他人选择使用稳健统计估计来设置阈值 [7]。将阈值设置为 T = αN ,其中 N 是噪声统计数据,α 是用户定义的参数,这是设置阈值的常用方法 [8]。由于其简单性,这种方法在植入体实施中尤其受欢迎 [9]。然而,这种算法的自适应性