由于渗透率低,拒绝率和膜结垢的问题,从油水乳液中去除微塑料和石油在膜技术中提出了重大挑战。这项研究着重于增强纳米纤维复合膜,以有效地分离废水中的微型污染物(0.5µm)和油水乳液。聚合氟化物(PVDF)聚合物纳米纤维是使用无针的静电纺丝技术生产的,并通过层压连接到非织造表面。通过碱性处理,生物表面活性剂(BS),TIO 2和CuO颗粒修饰膜,以防止结垢并提高分离效率。修饰的膜表现出异常的渗透性,BS修饰的膜达到9000 Lm -2 H -1 BAR -1 -1用于微塑性分离。但是,BS修饰导致油水乳液处理过程中的水渗透性降低。Tio 2和CuO进一步增强了渗透性并减少了结垢。TIO 2改性的膜在油水乳液分离中表现出卓越的性能,维持高油排排排排分率(〜95%)和防污特性。最大微塑料和油排斥率分别为99.99%和95.30%。这项研究说明了膜表面的成功修饰,以改善微塑料和油水乳液的分离,从而在废水处理技术方面取得了重大进步。
在生物医学应用中聚乙烯乙二醇(PEG)的广泛使用导致了抗PEG抗体的出现,抗PEG抗体加速了全身性清除率并破坏了包括纳米医学(纳米医学)的pe节制系统的性能。抗体识别通常涉及疏水性PEG末端,强调需要对替代性最终功能化策略,从而增强亲水性的同时保持隐形特性。在这里,我们使用硫磺和五肽作为末端修饰引入了一种新颖的卵概念。将这些ylide-peg(ypegs)共轭物作为模型系统整合到聚合物纳米颗粒中,表明Ylide官能化维持关键的物理化学特性,例如ζ电位和防污行为。至关重要的是,具有单克隆IgM和IgG抗PEG抗体的抗体结合测定表明,Ylide末端可显着降低主链和特异性抗PEG抗体的识别。来自MPEG免疫化小鼠的多克隆抗PEG抗体的实验表明,增加Ylide末端的化学复杂性具有高度极性(但总体电荷中性的)有效预防的抗原性,可以防止抗原性延伸到终极,最终降低了PEG特定的识别。这种模块化且可扩展的策略为工程隐形功能化聚合物提供了新的范式,对纳米医学,生物材料和表面涂层具有广泛的影响。
微生物学上影响的腐蚀(MIC)是行业和基础设施的关键问题。生物膜在金属,混凝土和医疗设备等各种表面上形成。但是,在某些情况下,微生物对材料的影响可能对材料的一致性和完整性呈负。因此,为了克服麦克风在系统上提出的问题,已经考虑了不同的物理,化学和生物学策略;所有人都有自己的优势,局限性,有时甚至是不必要的缺点。在所有方法中,尽管它们面临一些挑战,但在控制麦克风方面,杀生物剂治疗和防污涂料更为常见。他们缺乏特定的MIC微生物,导致越野耐药并需要更高的浓度。此外,它们构成环境风险并损害非目标生物。因此,随着法规的收紧,对环保,长期解决方案的需求正在增加。最近,与常规的杀菌剂或涂料相比,由于其显着的抗菌效率及其对较低的环境风险的潜力,注意纳米材料来减轻或控制MIC。使用纳米材料抑制麦克风非常新,并且缺乏对该主题的文献综述。为了解决这个问题,我们对被检查为杀菌剂或表面上涂层的形式进行的纳米材料进行了评论,以减轻麦克风。本次审查将有助于巩固有关使用纳米材料进行麦克风缓解的知识和研究。它将进一步有助于更好地理解与使用纳米材料进行麦克风预防和控制相关的潜在应用和挑战。
1. Aliakseyeu, A.、Hlushko, R. 和 Sukhishvili, SA (2022)。水溶液中具有较高临界溶液温度的非离子星形聚合物。聚合物化学,13(18),2637-2650。2. Daniels, GC、Hinnant, KM、Brown, LC、Weise, NK、Aukerman, MC 和 Giordano, BC (2022)。疏水性丙烯酸酯官能化的聚乙二醇 (PEG) 的共聚物可逆加成-断裂链转移合成:表面和泡沫性能研究。Langmuir,38(15),4547-4554。3. Kuzmyn, AR、Teunissen, LW、Fritz, P.、van Lagen, B.、Smulders, MM 和 Zuilhof, H. (2022)。通过水中的可见光诱导聚合 (SI-PET-RAFT) 在金表面上形成二嵌段和随机防污生物活性聚合物刷。Advanced Materials Interfaces,9(3),2101784。4. Moura, D.、Pereira, AT、Ferreira, HP、Barrias, CC、Magalhães, FD、Bergmeister, H. 和 Gonçalves, IC (2023)。含石墨烯基材料的聚(2-羟乙基甲基丙烯酸酯)水凝胶用于血液接触应用:从柔软惰性材料到坚固可降解材料。Acta Biomaterialia,164,253-268。5. Shaulli, X.、Rivas-Barbosa, R.、Bergman, MJ、Zhang, C.、Gnan, N.、Scheffold, F. 和 Zaccarelli, E. (2023)。通过超分辨率显微镜和数值模拟探测微凝胶的温度响应性及其与固体表面的相互作用。Acs Nano,17(3),2067-2078。
在本研究中,我们提出了一种多功能的表面工程策略,即将贻贝粘附肽模拟和生物正交点击化学相结合。本研究的主要思想源自一种新型受贻贝启发的肽模拟物,其具有可生物点击的叠氮基(即多巴胺 4-叠氮化物)。与贻贝足蛋白的粘附机制(即共价/非共价共介导的表面粘附)类似,受生物启发和可生物点击的肽模拟物多巴胺 4-叠氮化物能够与多种材料稳定结合,例如金属、无机和有机聚合物基材。除了材料通用性之外,多巴胺 4-叠氮化物的叠氮残基还能够通过第二步中的生物正交点击反应与二苄基环辛炔 (DBCO-) 修饰的生物活性配体进行特定结合。为了证明该策略适用于多样化的生物功能化,我们在不同的基底上将几种典型的生物活性分子与 DBCO 功能化进行生物正交结合,以制造满足生物医学植入物基本要求的功能表面。例如,通过分别嫁接防污聚合物、抗菌肽和 NO 生成催化剂,可以轻松将抗生物污损、抗菌和抗血栓形成特性应用于相关的生物材料表面。总体而言,这种新型表面生物工程策略已显示出对基底材料类型和预期生物功能的广泛适用性。可以想象,生物正交化学的“清洁”分子修饰和受贻贝启发的表面粘附的普遍性可以协同为各种生物医学材料提供一种多功能的表面生物工程策略。
半导体行业协会 (SIA) 1 很高兴有机会向总务管理局 (GSA) 提交这些评论,以响应其关于产品中 PFAS 的信息请求 (RFI)。2 SIA 支持联邦政府减少采购含 PFAS 产品的目标,但出于以下原因,我们认为半导体产品不应受到因此 RFI 而产生的任何采购限制,含有半导体元件的产品也不应仅仅因为其包含半导体作为其支持技术而受到限制。在 SIA 的支持下,半导体 PFAS 联盟发表了技术论文,记录了该行业在各种应用中对 PFAS 的使用,包括有关特定 PFAS 在我们的制造过程中的独特功能特性的信息、缺乏非 PFAS 替代品来满足性能要求,以及识别和采用潜在替代化学品所需的技术障碍和较长的交货时间(通常为 5-25 年或更长时间)。每篇技术论文都可以在 https://www.semiconductors.org/pfas/ 下载,我们将这些论文通过引用纳入这些评论中。3这些论文为我们的评论提供了技术基础,我们敦促 GSA 在未来制定规则时考虑为半导体制造业及其价值链提供便利。如 RFI 中所述,GSA 采购政策联邦咨询委员会 (GAP FAC) 建议 GSA 通过政府采购减少 PFAS,特别考虑其他州和联邦计划已经确定的产品类别:家具、地毯、地毯、窗帘、炊具、食品服务用具、食品包装材料、餐具、餐具、油漆、清洁产品、防污防水处理、地板和地板护理产品 SIA 向 GSA 建议半导体产品不应受到任何此类采购限制,含有半导体元件的产品也不应仅仅因为它包含半导体作为其支持技术而受到限制。正如半导体 PFAS 联盟发表的论文所记录的那样,鉴于目前的行业实践和工艺技术,在不使用 PFAS 的情况下制造半导体在技术上是不可行的。半导体存在于无数对美国政府至关重要的产品中
现将2014年3月31日至4月4日举行的国际海事组织海洋环境保护委员会第66届会议(MEPC 66)的有关情况和审议结果通知如下。 1.NOx Tier 3 法规的启动时间(附件 1.决议 MEPC。251(66)) MARPOL 附则 VI 规定逐步减少船舶的氮氧化物 (NOx) 排放。 Tier 2 法规目前适用于在建船舶。 Tier 3规定,2013年之前对符合规定的NOx减排技术的发展状况进行审查,并最终决定启动日期。请注意,Tier 3 法规仅适用于在氮氧化物排放控制区 (ECA) 航行的船舶。 在上届 MEPC 65(2013 年 5 月)上,根据此次审查,提交了一份报告,指出三级法规应按计划于 2016 年启动。另一方面,俄罗斯提出的将启动日期推迟至少五年的提议得到了很多支持,因此将启动日期推迟五年至2021年的条约修正案草案获得批准。 由于本次会议旨在通过公约拟议修正案的审议结果,MARPOL 公约的拟议修正案(该修正案规定从 2021 年开始适用 Tier 3 NOx 法规)被否决。另一方面,通过了《防污公约》附件六的修正案,允许对未来指定为氮氧化物排放控制区的海域确定Tier 3氮氧化物法规的开始日期。 因此,Tier 3法规将适用于2016年1月1日或之后建造的船舶,航行于目前属于NOx排放控制区的北美水域和美国加勒比海的船舶。今后,在指定为氮氧化物排放控制区的区域,Tier 3 法规将适用于在指定时设定的适用开始日期之后安放的船舶。 2.温室气体 (GHG) 相关 国际上规定减少温室气体 (GHG) 的《联合国气候变化框架公约》(UNFCCC) 京都议定书,不包括远洋船舶,以及 IMO 的控制措施将考虑航运的温室气体排放。
附件 5 MEPC.308(73) 号决议(2018 年 10 月 26 日通过) 2018 年新船达到的能源效率设计指数(EEDI)计算方法指南 海上环境保护委员会, 忆及《国际海事组织公约》第 38(a) 条关于防止和控制船舶造成海洋污染的国际公约赋予海上环境保护委员会(以下简称“委员会”)的职能, 还忆及委员会以 MEPC.203(62) 号决议通过了《关于修正经 1978 年议定书修订的 1973 年国际防止船舶造成污染公约 1997 年议定书附件的修正案》(纳入关于船舶能效的规定), MARPOL 附则 VI),注意到上述 MARPOL 附则 VI 修正案于 2013 年 1 月 1 日生效,还注意到经修正的 MARPOL 附则 VI 第 20 条(达到的能源效率设计指数(attained EEDI))要求,EEDI 的计算应考虑本组织制定的导则,还注意到经 MEPC.212(63) 号决议通过的 2012 年新船达到的能源效率设计指数(EEDI)计算方法导则及其修正案经 MEPC.224(64) 号决议通过,还注意到其经 MEPC.245(66) 号决议通过了 2014 年新船达到的能源效率设计指数(EEDI)计算方法导则,以及经 MEPC.263(68) 号决议和MEPC.281(70)及其修正案,认识到上述MARPOL附则VI修正案需要相关导则以确保规则的顺利和统一实施,在其第73届会议上,审议了拟议的2018年新船达到的能源效率设计指数(EEDI)计算方法导则,1 通过经修正的2018年新船达到的能源效率设计指数(EEDI)计算方法导则,其内容载于本决议附件;2 提请主管机关在制定和颁布实施经修正的MARPOL附则VI第20条规定的国家法律时,考虑上述修正案; 3 要求《防污公约》附则 VI 各缔约方和其他成员国政府将该修正案提请船东、船舶经营人、船舶建造商、船舶设计商和其他任何相关方注意;
新系列增强了电信、军事和射频测试与测量客户可用的切换选项。加利福尼亚州霍桑市 – 2022 年 2 月 8 日 – Teledyne Relays 今天宣布推出新的宽温度范围、工作频率高达 18 GHz 的密封继电器。新的 RF131 和 GRF131 单刀双掷 (SPDT) 型号是非闩锁的,提供故障安全功能。新产品扩展了主要射频测试和电信市场可用的坚固选项。RF131 和 GRF131 非闩锁型号是对 Teledyne Relays 广受推崇的等效通孔 RF121 和表面贴装 GRF121 磁锁继电器的补充。新的机电开关的工作温度范围为 -55 至 +85 °C,整个密封为玻璃-金属密封,可为最具挑战性的环境提供高达 18 GHz 和 40 Gbps 数据速率的故障安全功能。 RF131 和 GRF131 均采用扩展的 Centigrid ® 封装,继承了 Teledyne Relay 微型 RF 继电器的传统,在接触系统的内部结构中融入精密传输线结构,以确保最佳 RF 性能、最小插入损耗和信号路径之间的高隔离度。每个继电器都可以配备 5 或 12 V 额定线圈,并具有防尘防污设计,预期寿命长达 200 万次。RF131 是通孔安装版本,可以切换高达 12 GHz 的频率并具有 20 Gbps 的信号完整性。RF131 配备标准镀金 .75 英寸引线,也可以订购焊接或符合 RoHS 标准的浸焊引线。与通孔解决方案相比,GRF131 具有独特的接地屏蔽,便于表面安装并扩展频率范围。这将 RF 能力提高到 18 GHz,信号完整性提高到 40 Gbps。 Teledyne Relays 全球销售与营销总监 Michael Palakian 表示:“这些继电器专为 RF 衰减器、RF 开关矩阵、高频扩频无线电、ATE 以及其他需要可靠高频信号保真度和性能的应用而设计。低功耗使其成为功率预算受限应用的理想选择。” 新产品现已接受订购。更多信息请访问我们的网站:RF 和信号完整性 (teledynedefenseelectronics.com)
在此情况下,我们最近建议使用四钌取代的多金属氧酸盐 (POM) Na 10 [Ru IV 4 ( β -OH) 2 ( µ -O) 4 (H 2 O) 4 ( γ -SiW 10 O 36 ) 2 ] (Ru 4 POM),它作为聚合物膜的防污剂表现出独特的行为。[3,4] POM 是 Mo、W 和 V 等金属的最高氧化态下的过渡金属氧化物。它们具有广泛的结构拓扑和多功能的化学和物理特性,特别是在催化应用方面[5],并且可以集成到广泛的功能支架 [6] 和薄膜中。[7] Ru 4 POM 具有突出的氧活性,这可以在水氧化过程中观察到[8],以及 H 2 O 2 催化歧化为 H 2 O 和 O 2 的过程中。 [9] 后一种过程很容易实现,不需要使用外部光/电触发器,也不需要调节 pH 值或温度,因此,只要将 Ru 4 POM 集成到小型设备或膜中,就可以很容易地利用它产生氧气泡。[10] 这些代表了一种有用的机械剂,有助于去除不可逆的污垢颗粒,也就是那些对传统膜清洗有抵抗力的颗粒,这些颗粒会堵塞膜孔并使其重复使用更加困难。在将 POM 嵌入聚合物基质的可能策略中[11],我们之前已经利用了所谓的表面活性剂包覆 POM(SEP)[12],通过反阳离子交换,旨在用长的两亲性四烷基铵链取代钠阳离子。具体来说,i)二甲基十八烷基铵 (DODA) 用于促进 Ru4 POM 在 CHCl3 中的溶解度,并允许与聚醚醚酮 (PEEK-WC) 形成合适的聚合物共混物;[3] ii)可聚合阳离子丙烯酰氧十一烷基三乙基铵 (AUTEA) 用作 POM 反离子和可聚合双连续微乳液 (PBM) 的组分,后者用作多孔聚醚砜 (PES) 膜表面的功能涂层。 [4] 然而,尽管具有良好的自清洁性能,尤其是对于后一种系统,但用于制备这些 SEP 的阳离子仍然很昂贵。在此,我们探索了使用埃洛石纳米管 (HNT) 作为支架,从而为该领域提供不同的视角