摘要:这项研究着眼于与信用卡盗窃有关的严重问题,并评估机器学习方法如何检测并停止它。更复杂的欺诈是由于互联网交易的增加而造成的,危害了消费者和金融机构。信用卡日益增长的使用需要快速开发有效的欺诈检测系统,这些系统可以识别并停止欺诈性交易。这项研究着眼于一系列机器学习方法,从更常规的决策树或逻辑回归到更复杂的方法,例如支持向量算法,具有人工智能的神经网络,随机生成的森林和混合模型。我们分析了每种方法的优点和缺点,重点是其召回,准确性,精度和能力,以使用不平衡的数据集管理情况。可以通过将混合方法与合奏学习技术相结合,可以提高检测率并降低假阳性。合成的少数群体过度采样技术(SMOTE)提高了训练机学习模型的可靠性,并成功解决了类不平衡。这项研究强调了实时分析数据并采用最先进的技术(例如大数据分析和深度培训),以跟上新的欺诈策略是多么重要。行业 - academia的合作以及该部门正在进行的研发对于成功部署欺诈检测技术至关重要。这项研究强调了对最先进的机器学习方法的紧迫需求,以防止信用卡盗窃。通过增强金融机构识别欺诈的能力,这些技术发展将保护和维护消费者对在线交易的信任。改善了研究结论的目标,改善了所有利益相关者的欺诈检测系统和更安全的经济环境。
摘 要 : [ 目的 ] 为解决无人艇的船载导航雷达对养殖区 、 浮筒 、 小型漂浮物等海洋漂浮障碍物感知效果不 佳的问题 , 提出一种基于导航雷达回波视频数据构建与更新的占据栅格地图的环境感知方法。 [ 方法 ] 首 先 , 采用多级集合的形式描述雷达点迹与回波点间的包含关系 , 为栅格地图构建奠定基础 , 期间 , 基于群相邻 关系对近邻点迹进行凝聚 , 抑制目标分裂导致的航迹偏差 ; 然后 , 利用所提的基于自然对数函数的占据栅格 地图概率更新算法 , 通过合理利用历史数据区分海杂波与微小海洋漂浮障碍物 ; 最后 , 建立基于点迹属性的 栅格地图概率扩散模型 , 以较好地保证典型动态目标占据栅格更新的实时性。 [ 结果 ] 实船试验结果表明 , 所提方法可准确获取养殖区 、 浮筒等成片海洋漂浮障碍物的轮廓信息 , 抑制目标分裂现象 ; 与经典方法相比 , 所提方法对干舷 0.5 m 的小型漂浮物首次发现距离提升了 78.34 m , 定位精度提升了 1.42 m 。 [ 结论 ] 所提方 法能够实现对多种海洋漂浮障碍物 、 海面运动目标的准确感知 , 确保无人艇航行安全。
对于每个指标,百分位等级表示比较国家人口中具有相同价值相同或更少价值的国家的比例。所有指标的定义都是以至于最有利的值在竞争力方面都在梁的外部,并且对应于100的百分位等级。下奥地利的百分等级,其相对排名较差。例如,比较组中所有国家的60%的百分位等级意味着同样或更差,比奥地利好40%。除了在最后一年中遍布整个国家的比较,Wifo雷达还显示了奥地利在时间t t - 1,t - 3和t - 10。这可以进行短期,中期和长期比较。
摘要 - 在自动移动和机器人系统的感知框架内,对Lidars通常生成的3D点云的语义分析是许多应用程序的关键,例如对象检测和识别以及场景重建。场景语义分割可以通过将3D空间数据与专门的深神经网络直接整合在一起来实现。尽管这种类型的数据提供了有关周围环境的丰富几何信息,但它也提出了许多挑战:其非结构化和稀疏性质,不可预测的规模以及苛刻的计算要求。这些特征阻碍了实时半分析,尤其是在资源受限的硬件 - 构造方面,构成了许多机器人应用的主要计算组件。因此,在本文中,我们研究了各种3D语义分割方法,并分析了其对嵌入式NVIDIA JETSON平台的资源约束推断的性能和能力。我们通过标准化的培训方案和数据增强进行了公平的比较,为两个大型室外数据集提供了基准的结果:Semantickitti和Nuscenes。
使用激光束在1960年由T. Maiman发明激光后不久就会发出大气。在整个大气中,气溶胶的观察和表征随着复杂性的日益激增而普遍,现在经常整合到网络中。2006年发射了云 - 大气圈激光雷达和红外探路者卫星观察(卡利皮),仍在绕地球绕。LIDAR气溶胶观测值现在用于空气质量的预测。多普勒激光雷达,以观察较低或更高大气中的风场。现在,它们已商业可用,并在世界各地广泛部署了风能行业,机场的监视等。LIDAR,用于测量温度,湿度,大气中气态成分的浓度,设想用于太空任务的垂直轮廓,并得益于激光和探测器技术的进展。特刊将试图概述LiDAR技术和科学的最新发展以及观察大气的工业应用。
持续的注意力描述了我们不断专注于给定任务的能力。这种能力由我们的唤醒生理状态调节。尽管持续注意力的失误与唤醒失调有关,但潜在的生理学机制仍不清楚。新兴的工作表明,在睡眠状的慢波清醒中的入侵是向睡眠过渡的标记,可以机械地解释注意力失误。这项研究旨在通过对单胺系统的药理学操纵暴露,类似睡眠的慢波发生与持续注意力失败的行为结合之间的关系。在四个独立的实验性课程中,在一项双盲,随机控制试验中,有32名健康的男性参与者接受了甲式化甲酯,阿诺西汀,西妥位或安慰剂。在每个会话期间,脑电图(EEG)用于测量神经活动,而参与者完成了需要持续关注的视觉任务。甲化酯增加了皮质和皮质下区域的促唤醒的多巴胺和去甲肾上腺素,改善了行为性能,而原子氨酸却可以增加多巴胺和去甲肾上腺素,主要增加了额叶皮质的高度超过额叶。此外,增加促进睡眠的5-羟色胺的西妥位导致了更多的试验。基于脑电图记录,西妥位酰胺也与睡眠状的慢波增加有关。重要的是,与诸如功率之类的经典唤醒标记相比,只有慢速波会在特定区域特异性的时期中差异预测的错过和更快的响应。这些结果表明,唤醒的减少会导致清醒期间局部睡眠侵入,这可能与冲动性和迟钝性有关。
HGCDTE APD检测器模块电信是在CEA/LETI上开发的,用于大气刺激和自由空间光学(FSO)。开发是由可以在每个检测器模块中调整的通用子组件的设计和制造驱动的,以满足每个应用程序的特定检测器要求。从目前为大气激光雷达开发的探测器模块所设定的挑战详细介绍了此类子组件的优化,该挑战在AIRBUS的R&T CNES项目的范围内以及H2020 Project holdon的R&T项目范围以及FSO,以及在ESA项目的范围内与Mynaric Laserc的lasercom lasercom gmbhhs of airbus和FSO。最近已将两个检测器模块传递到空中客车DS进行广泛的LIDAR仿真测试。表明,与先前开发的大面积检测器相比,输入噪声,NEP = 10-15fw/√Hz(5个光子RMS)已减少了三分,尽管带宽已增加到180 MHz,以响应高空间深度分辨率的要求。在发现短光脉冲后200 ns时,时间延迟为10 -4,这与诸如测深分析之类的激光雷达应用兼容。
摘要 - 本文提出了一种使用M序列多输入多重输出(MIMO)雷达作为功能性脑成像的非电离应用的功能微波成像的新概念。潜在的假设是,如果我们可以准确地检测到大脑内部的血液体积的局部变化,我们可以推断出执行各种任务时大脑的哪些部分被激活。在此角度,根据MIMO雷达框架的主要挑战是基于到达时间(TOA)结果的多目标定位。为此,我们提出了一种在相处的MIMO-RADAR中的多边定位方法,以检测脑介质内部的单个目标。引入了系统概念,并提出了使用简化物理模型的模拟结果。为了验证这一点,我们专注于短距离感应的波形多样性和信号传导策略选项。模拟结果验证了所提出的方法精确计算目标位置的有效性。
由于低成本无人机的普及,小型无人机的高爆检测最近已成为一个非常重要的课题,因为这对安全构成了越来越大的潜在风险[1][2]。FMCW 雷达被认为是最适合无人机检测的解决方案之一,因为它结构简单,具有短距离检测能力[1]-[4]。小型无人机的检测是一项具有挑战性的任务,因为它们的尺寸非常有限,并且采用非反射材料,因此雷达截面 (RCS) 非常小。因此,只有利用毫米波频率、高发射功率以及具有低噪声系数 (NF) 和高动态范围的接收器,才能优化雷达检测范围和分辨率。在这种情况下,氮化镓 (GaN) 微波技术代表了性能最佳的解决方案,因为它们为发射器和接收器微波前端提供了最先进的性能系数[4]-[6]。利用微波频率下卓越的 GaN 功率密度,有利于实现紧凑型高功率发射器,以增强无人机目标的弱回波信号(低 RCS)。另一方面,由于兼具低噪声和宽动态范围特性,GaN 技术在 RX 部分也非常有吸引力 [5]-[9]。这一特性对于用于无人机检测的 FMCW 雷达接收器至关重要,因为 LNA 需要检测非常低的无人机回波信号(接近热噪声水平),同时在存在强干扰/阻塞信号的情况下保持其线性度,这些信号通常是由于雷达杂波和其自身发射器功率放大器的泄漏造成的 [3][4]。在本文中,我们描述了一种基于 GaN 的 Ka 波段 MMIC LNA,可用于 FMCW 雷达接收器,用于小型无人机检测。采用 mmW-GaN 技术可以同时瞄准低 NF、高增益和大动态范围,从而在 Ka 波段上方实现无与伦比的综合性能。