未来电动飞机和混合动力飞机对电力的需求不断增加,机载系统的高功率电力转换研究工作一直在进行中。航空系统的安全关键性质使航空电力转换器的可靠性成为关键的设计考虑因素。本文研究了电力电子系统的可靠性,重点研究了关键子部件的寿命限制因素。为起动发电机驱动转换器建模了不同系统电压水平下的电压源功率转换器的可靠性。一个关键的观察结果是,Si IGBT 器件足以满足低压和中压系统(高达 540 V)的可靠性要求。在更高的系统电压(高于 540 V)下,使用 Si IGBT 进行设计需要多级拓扑。在恒定功率曲线驱动中,转换器直流链路中薄膜电容器的磨损故障对系统可靠性的影响最小。在没有增强电压降额的多级拓扑中,系统可靠性主要受宇宙射线引起的随机故障影响。仿真结果表明,在高系统电压 (810 V) 下,带有 SiC mosfet 的 2 L 拓扑在可靠性方面优于基于 Si IGBT 的 3 L 拓扑。
独立学习 对某一领域有特殊兴趣或专长的学生可以选择跟随教员在该领域进行独立学习。这些机会要求学生具有最大的主动性、独立性和责任感。独立学习可以作为主修课程或辅修课程;无论哪种情况,学生和教师都必须能够在八天的周期内上五节课。作为辅修课程的独立学习由相应的系主任和高中部主任批准。作为主修课程的独立学习由系主任委员会批准。这些申请必须在下一年秋季学期的春季提交,并在该学年的春季学期的秋季提交。除非学生已经用尽了该系提供的课程,否则任何独立学习都不能算作第五个主修课程。
能源转型必须以最小的环境成本进行。大规模和快速部署可再生能源必须以最小的环境成本进行。非燃烧型可再生能源是实现净零能源系统的最具成本效益的解决方案,但它们会产生需要预防和减轻的环境影响。生物多样性危机是与气候变化同等严重的双重危机,如果我们要避免灾难性的大规模灭绝事件,就必须同时应对。随着生物多样性的迅速减少,我们不能将气候和自然保护对立起来。健康和有弹性的生态系统对于应对气候危机至关重要,因为它们可以成为缓解和适应气候的主要因素。欧盟的 2030 年生物多样性战略也承认了这一点,而《自然恢复法》提案为恢复和改善生态系统提供了重要机会,以帮助我们应对双重危机。同样,我们也不能破坏现有的完善的自然保护义务,这些义务最近也被发现是合适的。可再生能源的升级必须与现有立法的实施和
● 导航到工具 > 全局选项 > Copilot。 ● 勾选“启用 GitHub Copilot”。 ● 下载并安装 Copilot Agent 组件。 ● 单击“登录”按钮。 ● 在“GitHub Copilot:登录”对话框中,复制验证码。 ● GitHub Copilot:登录 ● 导航到或单击链接 https://github.com/login/device,粘贴验证码并单击“继续”。 ● GitHub 将请求 GitHub Copilot 必要的权限。要批准这些权限,请单击“授权 GitHub Copilot 插件”。 ● 权限获得批准后,您的 RStudio IDE 将显示当前登录的用户。 ● 关闭全局选项对话框,打开源文件(.R、.py、.qmd 等)并开始使用 Copilot 编码!
● 编程作业 (25 %) 将会有几项编程作业,涉及 OO 编程、OO 设计和 UML 图。所有作业都是个人作业。逾期的作业将不被接受。 ● 测验 (10 %) 每章之后都会有简短的测验。这些测验的目的是鼓励学生阅读课程材料并理解概念。这些测验的目的是帮助学生更好地理解概念并将其应用于作业以及为期中和期末考试做准备。 ● 项目 (20 %) 每学期最后一个月,每个小组由 3 名成员组成一个小组项目,涉及 OO 设计和 GUI 编程。 ● 期中和期末(各占 20 %) 将会有一次期中考试和一次期末考试,包括选择题和书面答案。问题可以来自测验、课堂笔记、幻灯片、作业和课堂讨论。 ● 课堂参与 (5 %) 为鼓励参与,您的期末成绩的 5% 将来自您的参与。请注意,参与并不等于出席。
皮肤癌检测是临床决策支持的一个常见应用 [7]。由于皮肤癌患者数量的增加和早期检测的良好治疗效果,过去几年来,人们在该领域进行了大量研究。在此背景下,DNN 已成为开发皮肤图像分类模型的可行方法 [2、8、12、30]。社区的高度关注导致出现了各种不同方法,其性能水平也参差不齐。1 所有方法的共同点都是训练一个可用于诊断并从而用于临床决策支持的模型。因此,新方法的评估标准通常是它们是否能够使模型在各种皮肤病诊断任务中取得更好的性能结果 [21]。同时,其他 AI 研究领域也越来越多地考虑对模型预测的解释。相比之下,这些技术在皮肤图像分类中的应用几乎没有得到解决,尽管最近的一些研究已经认识到
欧盟《共同努力条例》(ESR)为每个欧盟成员国设定了到 2030 年减少以下领域温室气体排放的国家目标:国内运输(不包括航空)、建筑、农业、小型工业和废物处理。爱尔兰的 ESR 目标是到 2030 年减少 42%。爱尔兰遵守了 2021-2023 年的 ESR 承诺,并采用了灵活性。然而,爱尔兰并没有按计划实现其 42% 的目标。美国环保署最新的分析发现,即使实施更高目标(采取额外措施)情景中的政策和措施,爱尔兰到 2030 年最多只能减少 25%,仍低于 42% 的减排目标,也低于去年估计的 30% 的减排目标。在这种情况下,政府将需要从其他成员国购买统计转移或信贷。
人工智能为汽车零部件制造商提供了改进制造工艺的新方法,并帮助他们满足客户严苛的质量要求。基于人工智能的系统可以优化缺陷检测和分类,防止生产线意外停机,更好地评估设备的剩余使用寿命,从而降低成本、缩短工期并提高客户满意度。
随着机器学习方法越来越多地用于增强人类决策能力,可解释人工智能 (XAI) 研究探索了将系统行为传达给人类的方法。然而,这些方法往往无法解释人类在与解释互动时的情感反应。面部情感分析研究人类面部的情绪表达,是了解用户如何参与解释的一个有前途的视角。因此,在这项工作中,我们的目标是 (1) 确定人们与 XAI 界面交互时哪些面部情感特征会很明显,以及 (2) 开发一个多任务特征嵌入,将面部情感信号与参与者对解释的使用联系起来。我们的分析和结果表明,当参与者未能有效地使用解释时,面部 AU1 和 AU4 以及唤醒的发生和值会增加。这表明面部情感分析应该纳入 XAI,以根据个人的互动风格个性化解释,并根据执行任务的难度调整解释。