1 型糖尿病 (T1D) 是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的 β 细胞被破坏。国际糖尿病联盟 (IDF) 估计,全球 T1D 病例每年增加 3%,美国估计是 T1D 新病例数量排名第二的国家 [1]。流行病学研究表明,全球报告的 T1D 病例中约有 40% 与人类白细胞抗原 (HLA) 基因的多态性有关;然而,最近儿童 T1D 数量增加,同时 HLA 基因型频率降低,表明环境压力增加是导致 T1D 的一个因素 [2–4]。因此,我们对疾病病理学的理解已经发展到目前的模型,即 T1D 是由遗传易感性和各种环境触发因素共同导致的,这些因素会激活和加速疾病的严重程度。
面对一线抗疟药物的耐药性不断出现,抗疟药物发现渠道中新候选分子的发现取得了巨大进展。然而,在现阶段,大多数后期候选分子都是通过对现有支架进行修改或通过表型筛选方法获得的。考虑到预期的损耗,保持早期发现渠道畅通非常重要。由于许多唾手可得的成果都是从经过全细胞抗疟活性测试的库中摘取的,研究人员正在寻求利用新技术(如低温电子显微镜)来解析结构,并且现已发现了大量经过化学验证的药物靶标,并进一步探索靶向药物发现。基于靶标的药物发现(包括基于结构的药物发现)很有吸引力,因为它可以更好地提炼化合物并提高效力和选择性。
大多数药物分子会调节多种靶蛋白,从而产生治疗效果或不良副作用。这种靶标混乱在一定程度上导致了高流失率,并导致当前药物发现过程中成本和时间的浪费,并使化合物选择性评估成为药物开发和再利用工作中的一个重要因素。传统上,化合物的选择性以其靶标活性谱(宽或窄)为特征,可以使用各种统计和信息理论指标进行量化。尽管现有的选择性指标被广泛用于表征化合物的整体选择性,但它们无法量化化合物对特定靶标蛋白(例如感兴趣的疾病靶标)的选择性。因此,我们将化合物选择性的概念扩展到靶标特异性选择性,定义为化合物与其他潜在靶标相比与特定蛋白质结合的效力。我们将目标特异性选择性分解为两个部分:1)化合物针对目标的效力(绝对效力),2)化合物针对其他目标的效力(相对效力)。然后将最大选择性的化合物-靶标对确定为双目标优化问题的解,该双目标优化问题同时优化这两个效力指标。在使用代表广泛多药理活性的大规模激酶抑制剂数据集进行的计算实验中,我们展示了基于优化的选择性评分如何提供一种系统的方法来寻找针对给定激酶靶标的有效和选择性化合物。与现有的选择性指标相比,我们展示了目标特异性选择性如何为多靶向激酶抑制剂的目标选择性和混杂性提供更多见解。尽管选择性得分对于缺失的生物活性值和数据集大小都具有相对稳健性,但我们进一步开发了一种基于置换的程序来计算经验 p 值,以评估给定生物活性数据集中化合物-靶标对观察到的选择性的统计意义。我们提出了几个案例研究,展示了靶标特异性选择性如何区分
1 生物血液学,埃斯坦大学医院,63000 克莱蒙费朗,法国 2 接待团队 7453 CHELTER,克莱蒙奥弗涅大学,63001 克莱蒙费朗,法国 3 保罗·奥戈尔曼白血病研究中心,癌症科学研究所,格拉斯哥大学,格拉斯哥 G12 8QQ,英国 4 安纳西-日内瓦医院,74374 普林吉,法国 5 Fi-LMC 集团,莱昂伯纳德中心,69008 里昂,法国 6 临床血液学,布拉布瓦大学医院,54500 旺多夫尔莱南锡,法国 7 下诺曼底血液学研究所,大学医院,14033 卡昂,法国 8 沃尔夫森·沃尔癌症研究中心,癌症科学研究所,格拉斯哥大学,格拉斯哥 G12 8QQ,英国 9 医学细胞遗传学,CHU Clermont-Ferrand,CHU Estaing,63000 Clermont-Ferrand,法国 * 通讯地址:blebecque@chu-clermontferrand.fr (BL); mberger@chu-clermontferrand.fr(MGB);电话:+33-4-7375-0682(MGB);传真:+33-4-7375-0683(MGB)
摘要:已发现果皮含有多种生物活性化合物,可用于草药治疗多种疾病。尚未研究 C. rostrata 果皮中存在的植物化学物质及其与人体蛋白质结合并改变其功能的潜力。因此,本研究确定了 C. rostrata 果皮提取物中类药物成分在人体中的主要蛋白质靶点以及与这些靶点相关的疾病状况。通过 GCMS 分析确定了 C. rostrata 果皮无水乙醇提取物的甲醇和正己烷馏分成分的身份。使用 SwissADME 和 SwissTargetPrediction 网络工具确定类药性(符合 Lipinski、Ghose、Veber、Egan 和 Muegge 过滤器)和类药物成分的蛋白质靶点。GCMS 分析显示正己烷和甲醇馏分中存在 49 种化合物。育亨宾衍生物 Corynan-16-羧酸,16,17-二脱氢-9,17-二甲氧基-,甲酯,(16E)-,在甲醇馏分中含量丰富 (13.33%)。正己烷馏分富含奇数链脂肪酸和植物甾醇。在馏分中鉴定出四种类药物化合物:(1) 壬二酸单乙酯;(2) 3- (2-甲氧基甲氧基亚乙基)-2,2 二甲基双环[2.2.1]庚烷;(3) 环十二醇,1-氨基甲基-,和 (4) Corynan-16-羧酸,16,17-二脱氢-9,17-二甲氧基-,甲酯,(16E)-。预测的类药化合物的主要蛋白质靶点包括碳酸酐酶 II、蛋白酪氨酸磷酸酶 1B、鞘氨醇激酶 1、麦芽糖酶-葡糖淀粉酶、腺苷 A2b 受体、P2X 嘌呤受体 7、MAP 激酶 p38 α、δ-阿片受体和 α-2 肾上腺素受体。研究结果表明,C. rostrata 外果皮含有类药植物化学物质,具有抗癌、糖尿病、疼痛和炎症疾病的潜力,提取物可能具有壮阳潜力。 DOI:https://dx.doi.org/10.4314/jasem.v26i5.18 开放获取文章:(https://pkp.sfu.ca/ojs/)这是一篇根据知识共享署名许可 (CCL) 分发的开放获取文章,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当引用。 影响因子:http://sjifactor.com/passport.php?id=21082 谷歌分析:https://www.ajol.info/stats/bdf07303d34706088ffffbc8a92c9c1491b12470 版权:© 2022 Ajayi 等人 日期:收到:2022 年 3 月 25 日;修订:2022 年 4 月 13 日;接受:2022 年 5 月 11 日 关键词:Cola rostrata 外果皮;计算机识别;药物样成分;蛋白质靶标预测外果皮(果皮)是表皮层,它包围并保护下面的中果皮免受微生物感染和水渗透,同时确保与外界环境的气体交换(Hansmann & Combrink,2003)。许多热带水果的外果皮不能食用,每年都会造成大量植物材料浪费。最近的研究重点是将果皮从环境污染转化为财富,并利用其丰富的植物化学成分用于医疗保健目的(Torres-León 等人,2018 年;Veloso 等人,2020 年;Hikal 等人,2021 年;Osorio 等人,2021 年)。
药物再利用 (也称为药物重新定位) 是确定已批准和/或现有药物的新治疗用途的过程,用于治疗常见、难治和罕见疾病 (Paul 等人,2022 年;Rudrapal 等人,2022 年)。另一方面,多药理学 (或多靶点方法) 涉及药物分子与不同治疗适应症/疾病的多个靶点的相互作用 (Jamir 等人,2022 年)。药物再利用正日益成为全球范围内一种有吸引力的策略,因为与从头药物发现相比,它涉及更低的风险、潜在的减少支出和更短的开发时间 (Rudrapal 等人,2020 年)。致命疾病 (癌症、心血管疾病、糖尿病、传染病、COVID-19) 的不断增加在很大程度上影响了数百万人的生活,从而给全球带来了沉重的经济负担 (Singh 等人,2020 年)。目前可用(或 FDA 批准)的药物不足以治疗大多数此类疾病,因此迫切需要新的候选药物和/或药物疗法。具有多靶点(多药理学方法)潜力的药物在重新利用方面非常有趣,因为这种双重协同策略可以提供更好的治疗替代方案和有用的临床候选药物(Pinzi 等人,2021 年)。研究主题“药物重新利用和多药理学:基于多靶点的药物发现中的协同方法”旨在汇编期刊范围内围绕该主题的最新研究想法、方向、发展和进展。该主题由上述三位客座编辑领导,他们是该领域的专家,并监督了提交论文的整个编辑过程。共发表了十篇文章,其中包括七篇原创研究和三篇评论文章。
新生儿持续性肺动脉高压 (PPHN) 是新生儿发病和死亡的重要原因。尽管医疗保健取得了进步,但死亡率仍然很高。在美国,吸入一氧化氮是 PPHN 患者的金标准治疗方法。然而,虽然它减少了对体外膜氧合的需求,但许多患者对吸入一氧化氮没有反应,并且它不会改善 PPHN 患者的总体死亡率。此外,在世界许多地方,使用一氧化氮的成本过高。因此,迫切需要研究替代疗法以改善新生儿的结果。在这篇综述中,我们介绍了一些新兴的肺动脉高压治疗目标的动物和人类数据,并优先考虑可用的儿科和新生儿数据。具体来说,我们讨论了可溶性鸟苷酸环化酶刺激剂和活化剂、前列环素及其类似物、磷酸二酯酶 3、4 和 5 抑制剂、rho-激酶抑制剂、内皮素受体阻滞剂、PPARγ 激动剂和抗氧化剂在治疗新生儿 PPHN 中的作用。关键词:体外膜氧合、新生儿、新生儿持续性肺动脉高压、肺动脉高压。新生儿 (2022):10.5005/jp-journals-11002-0015
摘要:Wnt 通路的异常激活在前列腺癌中是一种常见事件,可促进肿瘤形成、进展和治疗耐药性。最近的发现表明,针对 Wnt 通路治疗前列腺癌可能是有效的。然而,在前列腺癌进展的不同阶段激活 Wnt 通路的功能后果仍不清楚。临床前研究针对 Wnt 信号治疗前列腺癌(原发性和转移性病变)的疗效,以及提高我们对治疗反应的分子理解,对于确定有效的治疗策略和生物标志物至关重要,这些策略和生物标志物有助于指导治疗决策和改善患者护理。在这篇综述中,我们概述了导致前列腺癌中激活 Wnt 信号的基因改变类型,重点介绍了用于研究 Wnt 基因驱动因素在前列腺癌中的作用的实验室模型范围,并讨论了 Wnt 级联如何促进前列腺癌生长、转移和耐药性的新机制见解。
简单总结:新型治疗药物在肺癌中的使用改变了肺癌诊断和治疗的模式。由于先进诊断程序(例如下一代测序 (NGS))的发展,大约一半的非小细胞肺癌 (NSCLC) 患者可以被识别为具有基因畸变。EGFR、ALK 和 ROS-1 的激活突变的存在已经得到充分探索。可以成功靶向的新靶点包括 NTRK、MET、RET 和 HER 2 基因。一些粒子已经获得 FDA 批准,而更多的粒子正处于临床试验的后期阶段。考虑到胸部肿瘤学的快速变化,需要最新的总结。在这篇综述中,我们介绍了目前已获批准的治疗药物的情况,以及正在进行的重要临床试验。
免疫耐受性的丧失会导致自身免疫性疾病,而维持自身耐受性的机制(尤其是在人类中)尚不完全清楚。全基因组关联研究 (GWAS) 已确定数百个与自身免疫性疾病风险有统计学相关性的人类基因位点,这些位点的 DNA 和染色质表观遗传修饰与自身免疫性疾病风险相关。由于这些信号绝大多数位于远离基因的位置,因此识别致病变异及其对正确效应基因的功能性影响一直颇具挑战性。这些限制阻碍了将 GWAS 发现转化为新的药物靶点和临床干预措施,但最近在理解细胞核中基因组的空间组织方面取得的进展为基因调控提供了机制见解,并解答了 GWAS 留下的问题。在这里,我们讨论了“变异到基因映射”方法的潜力,该方法将 GWAS 与 3D 功能基因组数据相结合,以识别参与维持耐受性的人类基因。